Preferred Language
Articles
/
jih-3051
Some Results on Nano Perfect Mappings
...Show More Authors

The structure of this paper includes an introduction to the definition of the nano topological space, which was defined by M. L. Thivagar, who defined the lower approximation of G and the upper approximation of G, as well as defined the boundary region of G and some other important definitions that were mentioned in this paper with giving some theories on this subject. Some examples of defining nano perfect mappings are presented along with some basic theories. Also, some basic definitions were presented that form the focus of this paper, including the definition of nano  pseudometrizable space, the definition of nano compactly generated space, and the definition of completely nano para-compact. In this paper, we presented images of nano perfect mappings with some definitions and important evidence related to them, then we presented inverse images of nano perfect mappings with related theories.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Thu Jul 01 2021
Journal Name
Journal Of Physics: Conference Series
SOME RESULTS ON T_PURE SUBMODULES RELATED TO SUBMODULE
...Show More Authors
Abstract<p>The aim of this work is studying many concepts of a pure submodule related to sub-module L and introducing the two concepts, T_pure submodule related to submodule and the crossing property of T_pure related to submodule. Another characterizations and study some properties of this concept.</p>
View Publication
Scopus Crossref
Publication Date
Sun Dec 06 2015
Journal Name
Baghdad Science Journal
Some Results on Pure Submodules Relative to Submodule
...Show More Authors

Let R be a commutative ring with identity 1 and M be a unitary left R-module. A submodule N of an R-module M is said to be pure relative to submodule T of M (Simply T-pure) if for each ideal A of R, N?AM=AN+T?(N?AM). In this paper, the properties of the following concepts were studied: Pure essential submodules relative to submodule T of M (Simply T-pure essential),Pure closed submodules relative to submodule T of M (Simply T-pure closed) and relative pure complement submodule relative to submodule T of M (Simply T-pure complement) and T-purely extending. We prove that; Let M be a T-purely extending module and let N be a T-pure submodule of M. If M has the T-PIP, then N is T-purely extending.

View Publication Preview PDF
Crossref
Publication Date
Sun May 26 2019
Journal Name
Iraqi Journal Of Science
Some Results of (α, β) Derivations on Prime Semirings
...Show More Authors

      This paper investigates the concept (α, β) derivation on semiring and extend a few results of this map on prime semiring. We establish the commutativity of prime semiring and investigate when (α, β) derivation becomes zero.

View Publication Preview PDF
Scopus (11)
Crossref (2)
Scopus Crossref
Publication Date
Wed Mar 10 2021
Journal Name
Baghdad Science Journal
Some Types of Mappings in Bitopological Spaces
...Show More Authors

            This work, introduces some concepts in bitopological spaces, which are nm-j-ω-converges to a subset, nm-j-ω-directed toward a set, nm-j-ω-closed mappings, nm-j-ω-rigid set, and nm-j-ω-continuous mappings. The mainline idea in this paper is nm-j-ω-perfect mappings in bitopological spaces such that n = 1,2  and m =1,2 n m. Characterizations concerning these concepts and several theorems are studied, where j = q , δ, a , pre, b, b.

 

View Publication Preview PDF
Scopus (8)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Thu Jan 01 2009
Journal Name
Ibn Al– Haitham Journal For Pure And Applied Science
Some Results on Fibrewise Lindelöf and Locally Lindelöf Topological Spaces
...Show More Authors

In this paper we define and study new concepts of fibrewise topological spaces over B namely, fibrewise Lindelöf and locally Lindelöf topological spaces, which are generalizations of will-known concepts: Lindelöf topological space (1) "A topological space X is called a Lindelöf space if for every open cover of X has a countable subcover" and locally Lindelöf topological space (1) "A topological space X is called a locally Lindelöf space if for every point x in X, there exist a nbd U of x such that the closure of U in X is Lindelöf space". Either the new concepts are: "A fibrewise topological space X over B is called a fibrewise Lindelöf if the projection function p : X→B is Lindelöf" and "The fibrewise topological space X over B

... Show More
Preview PDF
Publication Date
Mon Jan 01 2001
Journal Name
University Of Jordan
A Study of Some Generalizations of Proper Mappings
...Show More Authors

Preview PDF
Publication Date
Thu Apr 27 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Semi-p-Proper Mappings
...Show More Authors

  The aim of this paper is to introduce a new type of proper mappings called semi-p-proper mapping by using semi-p-open sets, which is weaker than the proper mapping. Some properties and characterizations of this type of mappings are given.

View Publication Preview PDF
Publication Date
Sun Mar 01 2009
Journal Name
Baghdad Science Journal
Some Results On Lie Ideals With (&#963;,&#964;)-derivationIn Prime Rings
...Show More Authors

In this paper, we proved that if R is a prime ring, U be a nonzero Lie ideal of R , d be a nonzero (?,?)-derivation of R. Then if Ua?Z(R) (or aU?Z(R)) for a?R, then either or U is commutative Also, we assumed that Uis a ring to prove that: (i) If Ua?Z(R) (or aU?Z(R)) for a?R, then either a=0 or U is commutative. (ii) If ad(U)=0 (or d(U)a=0) for a?R, then either a=0 or U is commutative. (iii) If d is a homomorphism on U such that ad(U) ?Z(R)(or d(U)a?Z(R), then a=0 or U is commutative.

View Publication Preview PDF
Crossref
Publication Date
Sun Dec 09 2018
Journal Name
Baghdad Science Journal
Some Results on the Average Inverse Shadowing Property and Strong Ergodicity
...Show More Authors

View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Tue Nov 13 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
For Some Results of Semisecond Submodules
...Show More Authors

  Let â„› be a commutative ring with unity and let ℬ be a unitary R-module. Let ℵ be a proper submodule of ℬ, ℵ is called semisecond submodule if for any r∈ℛ, r≠0, n∈Z+, either rnℵ=0 or rnℵ=rℵ.

In this work, we introduce the concept of semisecond submodule and confer numerous properties concerning with this notion. Also we study semisecond modules as a popularization of second modules, where an ℛ-module ℬ is called semisecond, if ℬ is semisecond submodul of ℬ.

View Publication Preview PDF
Crossref