Let be a module over a commutative ring with identity. In this paper we intoduce the concept of Strongly Pseudo Nearly Semi-2-Absorbing submodule, where a proper submodule of an -module is said to be Strongly Pseudo Nearly Semi-2-Absorbing submodule of if whenever , for implies that either or , this concept is a generalization of 2_Absorbing submodule, semi 2-Absorbing submodule, and strong form of (Nearly–2–Absorbing, Pseudo_2_Absorbing, and Nearly Semi–2–Absorbing) submodules. Several properties characterizations, and examples concerning this new notion are given. We study the relation between Strongly Pseudo Nearly Semei-2-Absorbing submodule and (2_Absorbing, Nearly_2_Absorbing, Pseudo_2_Absorbing, and Nearly Semi–2–Absorbing) submodules and the converse of this relation is true under certain condition. Also, we introduced many characterizations of Strongly Pseudo Nearly Semei-2-Absorbing submodules in some types of modules.
In this paper, we introduced module that satisfying strongly -condition modules and strongly -type modules as generalizations of t-extending. A module is said strongly -condition if for every submodule of has a complement which is fully invariant direct summand. A module is said to be strongly -type modules if every t-closed submodule has a complement which is a fully invariant direct summand. Many characterizations for modules with strongly -condition for strongly -type module are given. Also many connections between these types of module and some related types of modules are investigated.
A submoduleA of amodule M is said to be strongly pure , if for each finite subset {ai} in A , (equivalently, for each a ?A) there exists ahomomorphism f : M ?A such that f(ai) = ai, ?i(f(a)=a).A module M is said to be strongly F–regular if each submodule of M is strongly pure .The main purpose of this paper is to develop the properties of strongly F–regular modules and study modules with the property that the intersection of any two strongly pure submodules is strongly pure .
-convex sets and -convex functions, which are considered as an important class of generalized convex sets and convex functions, have been introduced and studied by Youness [5] and other researchers. This class has recently extended, by Youness, to strongly -convex sets and strongly -convex functions. In these generalized classes, the definitions of the classical convex sets and convex functions are relaxed and introduced with respect to a mapping . In this paper, new properties of strongly -convex sets are presented. We define strongly -convex hull, strongly -convex cone, and strongly -convex cone hull and we proof some of their properties. Some examples to illustrate the aforementioned concepts and to cl
... Show MoreThe aim of this work is studying many concepts of a pure submodule related to sub-module L and introducing the two concepts, T_pure submodule related to submodule and the crossing property of T_pure related to submodule. Another characterizations and study some properties of this concept.
The goal of this research is to introduce the concepts of Large-small submodule and Large-hollow module and some properties of them are considered, such that a proper submodule N of an R-module M is said to be Large-small submodule, if N + K = M where K be a submodule of M, then K is essential submodule of M ( K ≤e M ). An R-module M is called Large-hollow module if every proper submodule of M is Large-small submodule in M.
Let R be a commutative ring with identity 1 and M be a unitary left R-module. A submodule N of an R-module M is said to be pure relative to submodule T of M (Simply T-pure) if for each ideal A of R, N?AM=AN+T?(N?AM). In this paper, the properties of the following concepts were studied: Pure essential submodules relative to submodule T of M (Simply T-pure essential),Pure closed submodules relative to submodule T of M (Simply T-pure closed) and relative pure complement submodule relative to submodule T of M (Simply T-pure complement) and T-purely extending. We prove that; Let M be a T-purely extending module and let N be a T-pure submodule of M. If M has the T-PIP, then N is T-purely extending.
A submodule N of a module M is said to be s-essential if it has nonzero intersection with any nonzero small submodule in M. In this article, we introduce and study a class of modules in which all its nonzero endomorphisms have non-s-essential kernels, named, strongly -nonsigular. We investigate some properties of strongly -nonsigular modules. Direct summand, direct sums and some connections of such modules are discussed.