Let be a module over a commutative ring with identity. In this paper we intoduce the concept of Strongly Pseudo Nearly Semi-2-Absorbing submodule, where a proper submodule of an -module is said to be Strongly Pseudo Nearly Semi-2-Absorbing submodule of if whenever , for implies that either or , this concept is a generalization of 2_Absorbing submodule, semi 2-Absorbing submodule, and strong form of (Nearly–2–Absorbing, Pseudo_2_Absorbing, and Nearly Semi–2–Absorbing) submodules. Several properties characterizations, and examples concerning this new notion are given. We study the relation between Strongly Pseudo Nearly Semei-2-Absorbing submodule and (2_Absorbing, Nearly_2_Absorbing, Pseudo_2_Absorbing, and Nearly Semi–2–Absorbing) submodules and the converse of this relation is true under certain condition. Also, we introduced many characterizations of Strongly Pseudo Nearly Semei-2-Absorbing submodules in some types of modules.
Let R be a commutative ring with unity and let M be an R-module. In this paper we
study strongly (completely) hollow submodules and quasi-hollow submodules. We investigate
the basic properties of these submodules and the relationships between them. Also we study
the be behavior of these submodules under certain class of modules such as compultiplication,
distributive, multiplication and scalar modules. In part II we shall continue the study of these
submodules.
Abstract Throughout this paper R represents commutative ring with identity and M is a unitary left R-module, the purpose of this paper is to study a new concept, (up to our knowledge), named St-closed submodules. It is stronger than the concept of closed submodules, where a submodule N of an R-module M is called St-closed (briefly N ≤Stc M) in M, if it has no proper semi-essential extensions in M, i.e if there exists a submodule K of M such that N is a semi-essential submodule of K then N = K. An ideal I of R is called St-closed if I is an St-closed R-submodule. Various properties of St-closed submodules are considered.
In this paper, we introduce the notions of Complete Pseudo Ideal, K-pseudo Ideal, Complete K-pseudo Ideal in pseudo Q-algebra. Also, we give some theorems and relationships among them are debated.
In this article, unless otherwise established, all rings are commutative with identity and all modules are unitary left R-module. We offer this concept of WN-prime as new generalization of weakly prime submodules. Some basic properties of weakly nearly prime submodules are given. Many characterizations, examples of this concept are stablished.
Promoting the production of industrially important aromatic chloroamines over transition-metal nitrides catalysts has emerged as a prominent theme in catalysis. This contribution provides an insight into the reduction mechanism of p-chloronitrobenzene (p-CNB) to p-chloroaniline (p-CAN) over the γ-Mo2N(111) surface by means of density functional theory calculations. The adsorption energies of various molecularly adsorbed modes of p-CNB were computed. Our findings display that, p-CNB prefers to be adsorbed over two distinct adsorption sites, namely, Mo-hollow face-centered cubic (fcc) and N-hollow hexagonal close-packed (hcp) sites with adsorption energies of −32.1 and −38.5 kcal/mol, respectively. We establish that the activation of nit
... Show MoreLet R be a commutative ring with identity, and M be a left untial module. In this paper we introduce and study the concept w-closed submodules, that is stronger form of the concept of closed submodules, where asubmodule K of a module M is called w-closed in M, "if it has no proper weak essential extension in M", that is if there exists a submodule L of M with K is weak essential submodule of L then K=L. Some basic properties, examples of w-closed submodules are investigated, and some relationships between w-closed submodules and other related modules are studied. Furthermore, modules with chain condition on w-closed submodules are studied.