The goal of this research is to introduce the concepts of Large-small submodule and Large-hollow module and some properties of them are considered, such that a proper submodule N of an R-module M is said to be Large-small submodule, if N + K = M where K be a submodule of M, then K is essential submodule of M ( K ≤e M ). An R-module M is called Large-hollow module if every proper submodule of M is Large-small submodule in M.
In this paper, we introduce the concepts of Large-lifting and Large-supplemented modules as a generalization of lifting and supplemented modules. We also give some results and properties of this new kind of modules.
In this paper, we introduce the concepts of Large-lifting and Large-supplemented modules as a generalization of lifting and supplemented modules. We also give some results and properties of this new kind of modules.
The goal of this research is to introduce the concepts of Large-coessential submodule and Large-coclosed submodule, for which some properties are also considered. Let M be an R-module and K, N are submodules of M such that , then K is said to be Large-coessential submodule, if . A submodule N of M is called Large-coclosed submodule, if K is Large-coessential submodule of N in M, for some submodule K of N, implies that .
The goal of this research is to introduce the concepts of Large-coessential submodule and Large-coclosed submodule, for which some properties are also considered. Let M be an R-module and K, N are submodules of M such that , then K is said to be Large-coessential submodule, if . A submodule N of M is called Large-coclosed submodule, if K is Large-coessential submodule of N in M, for some submodule K of N, implies that .
Let M be a R-module, where R be a commutative ring with identity, In this paper, we defined a new kind of module namely ET-hollow lifting module, Let T be a submodule of M, M is called ET-hollow lifting module if for every sub-module H of M with
In this paper ,we introduce hollow modules with respect to an arbitrary submodule .Let M be a non-zero module and T be a submodule of M .We say that M is aT-hollow module if every proper submodule K of M such that T ⊈ K is a T-small submodule of M .We investigate the basic properties of a T-hollow module
In this paper, the problem of developing turbulent flow in rectangular duct is investigated by obtaining numerical results of the velocity profiles in duct by using large eddy simulation model in two dimensions with different Reynolds numbers, filter equations and mesh sizes. Reynolds numbers range from (11,000) to (110,000) for velocities (1 m/sec) to (50 m/sec) with (56×56), (76×76) and (96×96) mesh sizes with different filter equations. The numerical results of the large eddy simulation model are compared with k-ε model and analytic velocity distribution and validated with experimental data of other researcher. The large eddy simulation model has a good agreement with experimental data for high Reynolds number with the first, seco
... Show MoreWe presented here a 65years old lady with an unusual presentation of a large epigastric hernia of twenty years duration .The swelling was occupying all the right hypochondrial region .The diagnosis was made on r^E^a-operative identification of the defect in the linea alba which wassutured after removal of the hernial sac and its contents .The postoperative course was uneventful and the patient remained with no complications or recurrence for more than two years follow up.