The objective of this paper is to show modern class of open sets which is an -open. Some functions via this concept were studied and the relationships such as continuous function strongly -continuous function -irresolute function -continuous function.
In this paper, the concept of fully stable Banach Algebra modules relative to an ideal has been introduced. Let A be an algebra, X is called fully stable Banach A-module relative to ideal K of A, if for every submodule Y of X and for each multiplier ?:Y?X such that ?(Y)?Y+KX. Their properties and other characterizations for this concept have been studied.
The idea of a homomorphism of a cubic set of a KU-semigroup is studied and the concept of the product between two cubic sets is defined. And then, a new cubic bipolar fuzzy set in this structure is discussed, and some important results are achieved. Also, the product of cubic subsets is discussed and some theorems are proved. 2010 AMS Classification: 06F35, 03G25, 08A72.
In this paper, the Normality set will be investigated. Then, the study highlights some concepts properties and important results. In addition, it will prove that every operator with normality set has non trivial invariant subspace of .
Establishing coverage of the target sensing field and extending the network’s lifetime, together known as Coverage-lifetime is the key issue in wireless sensor networks (WSNs). Recent studies realize the important role of nature-inspired algorithms in handling coverage-lifetime problem with different optimization aspects. One of the main formulations is to define coverage-lifetime problem as a disjoint set covers problem. In this paper, we propose an evolutionary algorithm for solving coverage-lifetime problem as a disjoint set covers function. The main interest in this paper is to reflect both models of sensing: Boolean and probabilistic. Moreover, a heuristic operator is proposed as a local refinement operator to improve the quality
... Show MoreUtilizing the Turbo C programming language, the atmospheric earth model is created from sea level to 86 km. This model has been used to determine atmospheric Earth parameters in this study. Analytical derivations of these parameters are made using the balancing forces theory and the hydrostatic equation. The effects of altitude on density, pressure, temperature, gravitational acceleration, sound speed, scale height, and molecular weight are examined. The mass of the atmosphere is equal to about 50% between sea level and 5.5 km. g is equal to 9.65 m/s2 at 50 km altitude, which is 9% lower than 9.8 m/s2 at sea level. However, at 86 km altitude, g is close to 9.51 m/s2, which is close to 15% smaller
... Show MoreUtilizing the Turbo C programming language, the atmospheric earth model is created from sea level to 86 km. This model has been used to determine atmospheric Earth parameters in this study. Analytical derivations of these parameters are made using the balancing forces theory and the hydrostatic equation. The effects of altitude on density, pressure, temperature, gravitational acceleration, sound speed, scale height, and molecular weight are examined. The mass of the atmosphere is equal to about 50% between sea level and 5.5 km. g is equal to 9.65 m/s2 at 50 km altitude, which is 9% lower than 9.8 m/s2 at sea level. However, at 86 km altitude, g is close to 9.51 m/s2, which is close to 15% smaller than 9.8 m/s2. These resu
... Show MoreIn this model, we use the C++ programming language to develop a program that calculates the atmospheric earth model from the surface to 250 kilometers. The balance forces theory is used to derive the pressure equation. The hydrostatic equation is utilized to calculate these parameters analytically. Variations of the parameters with altitude (density, pressure, temperature, and molecular weight) are investigated intensively. The equations for gravitational acceleration, sound speed, and scale height are also obtained. This model is used to investigate the effects of the earth's atmosphere on the space shuttle and the moving bodies inside it.
The main purpose of this paper is to introduce a some concepts in fibrewise bitopological spaces which are called fibrewise , fibrewise -closed, fibrewise −compact, fibrewise -perfect, fibrewise weakly -closed, fibrewise almost -perfect, fibrewise ∗-bitopological space respectively. In addition the concepts as - contact point, ij-adherent point, filter, filter base, ij-converges to a subset, ij-directed toward a set, -continuous, -closed functions, -rigid set, -continuous functions, weakly ijclosed, ij-H-set, almost ij-perfect, ∗-continuous, pairwise Urysohn space, locally ij-QHC bitopological space are introduced and the main concept in this paper is fibrewise -perfect bitopological spaces. Several theorems and characterizations c
... Show MoreThroughout this paper we introduce the notion of coextending module as a dual of the class of extending modules. Various properties of this class of modules are given, and some relationships between these modules and other related modules are introduced.
Let R be a commutative ring with identity 1 and M be a unitary left R-module. A submodule N of an R-module M is said to be pure relative to submodule T of M (Simply T-pure) if for each ideal A of R, N?AM=AN+T?(N?AM). In this paper, the properties of the following concepts were studied: Pure essential submodules relative to submodule T of M (Simply T-pure essential),Pure closed submodules relative to submodule T of M (Simply T-pure closed) and relative pure complement submodule relative to submodule T of M (Simply T-pure complement) and T-purely extending. We prove that; Let M be a T-purely extending module and let N be a T-pure submodule of M. If M has the T-PIP, then N is T-purely extending.