We introduce in this paper the concept of approximaitly semi-prime submodules of unitary left -module over a commutative ring with identity as a generalization of a prime submodules and semi-prime submodules, also generalization of quasi-prime submodules and approximaitly prime submodules. Various basic properties of an approximaitly semi-prime submodules are discussed, where a proper submodule of an -module is called an approximaitly semi-prime submodule of , if whenever , where , and , implies that . Furthermore the behaviors of approximaitly semi-prime submodule in some classes of modules are studied. On the other hand several characterizations of this concept are introduced.
This paper investigates the concept (α, β) derivation on semiring and extend a few results of this map on prime semiring. We establish the commutativity of prime semiring and investigate when (α, β) derivation becomes zero.
Let S be a commutative ring with identity, and A is an S-module. This paper introduced an important concept, namely strongly maximal submodule. Some properties and many results were proved as well as the behavior of that concept with its localization was studied and shown.
Let R be a commutative ring with unity and an R-submodule N is called semimaximal if and only if
the sufficient conditions of F-submodules to be semimaximal .Also the concepts of (simple , semisimple) F- submodules and quotient F- modules are introduced and given some properties .
Let R be a commutative ring with identity 1 and M be a unitary left R-module. A submodule N of an R-module M is said to be pure relative to submodule T of M (Simply T-pure) if for each ideal A of R, N?AM=AN+T?(N?AM). In this paper, the properties of the following concepts were studied: Pure essential submodules relative to submodule T of M (Simply T-pure essential),Pure closed submodules relative to submodule T of M (Simply T-pure closed) and relative pure complement submodule relative to submodule T of M (Simply T-pure complement) and T-purely extending. We prove that; Let M be a T-purely extending module and let N be a T-pure submodule of M. If M has the T-PIP, then N is T-purely extending.
Let R be a commutative ring with identity, and let M be a unity R-module. M is called a bounded R-module provided that there exists an element x?M such that annR(M) = annR(x). As a generalization of this concept, a concept of semi-bounded module has been introduced as follows: M is called a semi-bounded if there exists an element x?M such that . In this paper, some properties and characterizations of semi-bounded modules are given. Also, various basic results about semi-bounded modules are considered. Moreover, some relations between semi-bounded modules and other types of modules are considered.
Let Ḿ be a unitary R-module and R is a commutative ring with identity. Our aim in this paper to study the concepts T-ABSO fuzzy ideals, T-ABSO fuzzy submodules and T-ABSO quasi primary fuzzy submodules, also we discuss these concepts in the class of multiplication fuzzy modules and relationships between these concepts. Many new basic properties and characterizations on these concepts are given.
Let R be a 2-torision free prime ring and ?, ?? Aut(R). Furthermore, G: R×R?R is a symmetric generalized (?, ?)-Biderivation associated with a nonzero (?, ?)-Biderivation D. In this paper some certain identities are presented satisfying by the traces of G and D on an ideal of R which forces R to be commutative
This dissertation depends on study of the topological structure in graph theory as well as introduce some concerning concepts, and generalization them into new topological spaces constructed using elements of graph. Thus, it is required presenting some theorems, propositions, and corollaries that are available in resources and proof which are not available. Moreover, studying some relationships between many concepts and examining their equivalence property like locally connectedness, convexity, intervals, and compactness. In addition, introducing the concepts of weaker separation axioms in α-topological spaces than the standard once like, α-feebly Hausdorff, α-feebly regular, and α-feebly normal and studying their properties. Furthermor
... Show More