In thisipaper, we introduce the concepts of the modified tupledicoincidence points and the mixed finiteimonotone property. Also the existenceiand uniquenessiof modified tupled coincidenceipoint is discusses without continuous condition for mappings having imixed finite monotoneiproperty in generalizedimetric spaces.
In this paper we define and study new concepts of fibrewise topological spaces over B namely, fibrewise near topological spaces over B. Also, we introduce the concepts of fibrewise near closed and near open topological spaces over B; Furthermore we state and prove several Propositions concerning with these concepts.
In this paper we introduce a new type of functions called the generalized regular
continuous functions .These functions are weaker than regular continuous functions and
stronger than regular generalized continuous functions. Also, we study some
characterizations and basic properties of generalized regular continuous functions .Moreover
we study another types of generalized regular continuous functions and study the relation
among them
Here, we found an estimation of best approximation of unbounded functions which satisfied weighted Lipschitz condition with respect to convex polynomial by means of weighted Totik-Ditzian modulus of continuity
Abstract
The population is sets of vocabulary common in character or characters and it’s study subject or research . statistically , this sets is called study population (or abridgement population ) such as set of person or trees of special kind of fruits or animals or product any country for any commodity through infinite temporal period term ... etc.
The population maybe finite if we can enclose the number of its members such as the students of finite school grade . and maybe infinite if we can not enclose the number of it is members such as stars or aquatic creatures in the sea . when we study any character for population the statistical data is concentrate by two metho
... Show MoreThe present study concentrates on the new generalizations of the Jordan curve theorem. In order to achieve our goal, new spaces namely PC-space and strong PC-space are defined and studied their properties. One of the main concepts that use to define the related classes of spaces is paracompact space. In addition, the property of being PC-space and strong PC-space is preserved by defining a new type of function so called para-perfect function.
The hydraulic conditions of a flow previously proved to be changed when placing large-scale geometric roughness elements on the bed of an open channel. These elements impose more resistance to the flow. The geometry of the roughness elements, the numbers used, and the configuration are parameters that can affect the hydraulic flow characteristics. The target is to use inclined block elements to control the salt wedge propagation pointed in most estuaries to prevent its negative effects. The Computational Fluid Dynamics CFD Software was used to simulate the two-phase flow in an estuary model. In this model, the used block elements are 2 cm by 3 cm cross-sections with an inclined face in the flow direction, with a length
... Show MoreIn this work we define and study new concept of fibrewise topological spaces, namely fibrewise soft topological spaces, Also, we introduce the concepts of fibrewise closed soft topological spaces, fibrewise open soft topological spaces, fibrewise soft near compact spaces and fibrewise locally soft near compact spaces.
We introduce and discuss recent type of fibrewise topological spaces, namely fibrewise soft bitopological spaces. Also, we introduce the concepts of fibrewise closed soft bitopological spaces, fibrewise open soft bitopological spaces, fibrewise locally sliceable soft bitopological spaces and fibrewise locally sectionable soft bitopological spaces. Furthermore, we state and prove several propositions concerning these concepts.
R. Vasuki [1] proved fixed point theorems for expansive mappings in Menger spaces. R. Gujetiya and et al [2] presented an extension of the main result of Vasuki, for four expansive mappings in Menger space. In this article, an important lemma is given to prove that the iteration sequence is Cauchy under suitable condition in Menger probabilistic G-metric space (shortly, MPGM-space). And then, used to obtain three common fixed point theorems for expansive type mappings.