In this work, new kinds of blocking sets in a projective plane over Galois field PG(2,q) can be obtained. These kinds are called the complete blocking set and maximum blocking set. Some results can be obtained about them.
The main purpose of this work is to find the complete arcs in the projective 3-space over Galois field GF(2), which is denoted by PG(3,2), by two methods and then we compare between the two methods
Discrete logarithms are applied in many cryptographic problems . For instance , in public key . and for construction of sets with disti nct sums of k-clcments. The purpose o r this paper
is to modify the method ol' informationl1·iding using discrete logarithms , introduce new properties of St - sets , uscdthe direct product of groups to construct cyclic group and finally, present modified method for knapsack &
... Show MoreThe basis of this paper is to study the concept of almost projective semimodules as a generalization of projective semimodules. Some of its characteristics have been discussed, as well as some results have been generalized from projective semimodules.
The simulation of passively Q-switching is four non – linear first order differential equations. The optimization of passively Q-switching simulation was carried out using the constrained Rosenbrock technique. The maximization option in this technique was utilized to the fourth equation as an objective function; the parameters, γa, γc and β as were dealt with as decision variables. A FORTRAN program was written to determine the optimum values of the decision variables through the simulation of the four coupled equations, for ruby laser Q–switched by Dy +2: CaF2.For different Dy +2:CaF2 molecules number, the values of decision variables was predicted using our written program. The relaxation time of Dy +2: CaF2, used with ruby was
... Show MoreThe aim of this paper is to construct the (k,r)-caps in the projective 3-space PG(3,p) over Galois field GF(4). We found that the maximum complete (k,2)-cap which is called an ovaloid , exists in PG(3,4) when k = 13. Moreover the maximum (k,3)-caps, (k,4)-caps and (k,5)-caps.
The aim of t his p aper is t o const ruct t he (k,r)-caps in t he p rojective 3-sp ace PG(3,p ) over Galois field GF(4). We found t hat t he maximum comp let e (k,2)-cap which is called an ovaloid, exist s in PG(3,4) when k = 13. Moreover t he maximum (k,3)-cap s, (k,4)-cap s and (k,5)-caps.
The focus of this article, reviewed a generalized of contraction mapping and nonexpansive maps and recall some theorems about the existence and uniqueness of common fixed point and coincidence fixed-point for such maps under some conditions. Moreover, some schemes of different types as one-step schemes ,two-step schemes and three step schemes (Mann scheme algorithm, Ishukawa scheme algorithm, noor scheme algorithm, .scheme algorithm, scheme algorithm Modified scheme algorithm arahan scheme algorithm and others. The convergence of these schemes has been studied .On the other hands, We also reviewed the convergence, valence and stability theories of different types of near-plots in convex metric space.
The aim of this paper is to introduce the concept of N and Nβ -closed sets in terms of neutrosophic topological spaces. Some of its properties are also discussed.