In this paper the chain length of a space of fuzzy orderings is defined, and various properties of this invariant are proved. The structure theorem for spaces of finite chain length is proved. Spaces of Fuzzy Orderings Throughout X = (X,A) denoted a space of fuzzy orderings. That is, A is a fuzzy subgroup of abelian group G of exponent 2. (see [1] (i.e. x 2 = 1,  x  G), and X is a (non empty) fuzzy subset of the character group ï£ (A) = Hom(A,{1,–1}) satisfying: 1. X is a fuzzy closed subset of ï£ (A). 2.  an element e  A such that ï³(e) = – 1  ï³ ïƒŽ X. 3. Xïž :={a  A\ ï³(a) = 1  ï³ ïƒŽ X} = 1. 4. If f and g are forms over A and if x  D( f  g) then  y  D( f ) and z  D(g) such that x  D<y, z >. Observe, by 3, that the element e  A whose existence is asserted by 2 is unique. Also, e  1 (since ï³(1) = 1  ï³ ïƒŽ X). Notice that for a  A, the set X(a):= {ï³ ïƒŽ Xï³(a) = 1} is clopen (i.e. both closed and open) in X. Moreover, ï³(a) = – 1  ï³(– a) = 1 holds for any ï³ ïƒŽ X (by 2).
Let f and g be a self – maps of a rational exterior space . A natural number m is called a minimal coincidence period of maps f and g if f^m and g^m have a coincidence point which is not coincidence by any earlier iterates. This paper presents a complete description of the set of algebraic coincidence periods for self - maps of a rational exterior space which has rank 2 .
Let
be an
module, and let
be a set, let
be a soft set over
. Then
is said to be a fuzzy soft module over
iff
,
is a fuzzy submodule of
. In this paper, we introduce the concept of fuzzy soft modules over fuzzy soft rings and some of its properties and we define the concepts of quotient module, product and coproduct operations in the category of
modules.
Zadah in [1] introduced the notion of a fuzzy subset A of a nonempty set S as a mapping from S into [0,1], Liu in [2] introduced the concept of a fuzzy ring, Martines [3] introduced the notion of a fuzzy ideal of a fuzzy ring. A non zero proper ideal I of a ring R is called an essential ideal if I  J  (0), for any non zero ideal J of R, [4]. Inaam in [5] fuzzified this concept to essential fuzzy ideal of fuzzy ring and gave its basic properties. Nada in [6] introduced and studied notion of semiessential ideal in a ring R, where a non zero i
... Show MoreWe present the notion of bipolar fuzzy k-ideals with thresholds (
Let
, 1
( )
1 2 ,
( , ) 1 2
m n
s s
m n
f s s a e m n , (s it , j 1,2) j j j ,
m 1 and
n 1 being an increasing sequences of positive numbers and a E m n , where E
is Banach algebra, represent a vector valued entire Dirichlet functions in two
variables. The space of all such entire functions having order at most equal to
is considered in this paper. A metric topology using the growth parameters of f is
defined on and its various properties are obtained. The form of linear operator on
the space is characterized and proper bases are also characterized in terms of
growth parameters .
In this research, the problem of ambiguity of the data for the project of establishing the typical reform complex in Basrah Governorate was eliminated. The blurry of the data represented by the time and cost of the activities was eliminated by using the Ranking function and converting them into normal numbers. Scheduling and managing the Project in the Critical Pathway (CPM) method to find the project completion time in normal conditions in the presence of non-traditional relationships between the activities and the existence of the lead and lag periods. The MS Project was used to find the critical path. The results showed that the project completion time (1309.5) dinars and the total cost has reached (33113017769) dinars and the
... Show MoreIn this paper, we introduce and study the essential and closed fuzzy submodules of a fuzzy module X as a generalization of the notions of essential and closed submodules. We prove many basic properties of both concepts.
In this paper the definition of fuzzy normed space is recalled and its basic properties. Then the definition of fuzzy compact operator from fuzzy normed space into another fuzzy normed space is introduced after that the proof of an operator is fuzzy compact if and only if the image of any fuzzy bounded sequence contains a convergent subsequence is given. At this point the basic properties of the vector space FC(V,U)of all fuzzy compact linear operators are investigated such as when U is complete and the sequence ( ) of fuzzy compact operators converges to an operator T then T must be fuzzy compact. Furthermore we see that when T is a fuzzy compact operator and S is a fuzzy bounded operator then the composition TS and ST are fuzzy compact
... Show MoreThis paper deals with constructing mixed probability distribution from mixing exponential
The main idea of this paper is to define other types of a fuzzy local function and study the advantages and differences between them in addition to discussing some definitions of finding new fuzzy topologies. Also in this research, a new type of fuzzy closure has been defined, where the relation between the new type and different types of fuzzy local function has been studied