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Abstract: This article presents to develop a new mathematical model to 
construct membership functions of the fuzzy single channel queueing model 
F(M1, M2)/F(M1, M2)/1/PR-NP with two class of non-preemptive priority with 
unequal service rates. The main idea of this article is to merge between 
mathematical programming technique and Yager’s ranking method by using  
α-cut approach and Zadeh extension principle to transform fuzzy queues into a 
family of conventional crisp (distinct) queues in this context. A numerical 
example is given to explain the validity of this new approach to obtain real 
exact values under different levels of α in the system. 
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1 Introduction 

The concept of priority queues is encountered in various service applications. Generally, 
priority queues are divided into two classes; high-priority and low priority, where the 
customers with high priority are ahead of line to be served before the customers with low 
priority which is likewise known as non-preemptive priority. A large number of single 
queue models with non-preemptive priorities have been used as equal mean service rates 
for all customers. However, some other single channel queues tend to display a different 
pattern where the mean service rates are not necessarily equal because of the nature of 
system. Within the context of traditional queueing theory, the inter arrival times and 
service times are required to follow certain distributions. However, in many practical 
applications, the statistical information may be obtained more subjectively; i.e., the 
arrival pattern and service pattern are more suitably described by linguistic terms such as 
fast, slow, or moderate, using probability distributions. Thus, fuzzy queues are much 
more realistic than the commonly used crisp queues. A lot of studies have adopted fuzzy 
queues in their models, such as the work presented by Prade (1980) and Lee and Li 
(1989) where the analytical results for two types of fuzzy queues was obtained by 
adopting Zadeh’s extension principle. Also, a α-cut procedure was proposed by Negi and 
Lee (1992) for analysing the fuzzy queue for two variables using simulation, while 
Chiang Kao and Li (1999) also presented a novel approach for obtaining the membership 
function of a fuzzy queue system. 

Other authors who also ventured into this area of research include Jeeva and 
Rathnakumari (2012) whose work analysed a batch arrival single server queue with fuzzy 
vacation and fuzzy parameters and Devaraj and Jayalakshmi (2012) and Devaraj (2012) 
who also adopted the same technique, although their work placed importance on equal 
service rate priority queues with the assumption that the service and inter arrival times 
follow specific probability distributions. More recent literature include Palpandi and 
Geetharamani (2013), using robust ranking technique for the reduction of fuzzy queues 
into crisp queues with three priority class and Ramesh and Ghuru (2014) proposed to 
generate possibility distribution of the fuzzy queue with non-preemptive priority. 
Generally, previous research on fuzzy queueing models is focused on ordinary queues 
with one or two fuzzy variables. Hence, in this paper we develop an approach that 
provides system characteristics for the priority queues with four fuzzy variables. Through 
α-cuts we transform the fuzzy priority queues to a family of crisp priority queues with the 
help of nonlinear programming (NLP) solutions, completely and successfully yielding to 
build the membership functions of the system characteristics. Although, an explicit 
closed-form expression for the membership function is very difficult to obtain in the case 
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of four fuzzy variables, we develop a characterisation that yields closed-form expressions 
when interval limits are invertible. Since the system characteristics are described by 
membership function, the values conserve completely all of fuzziness of arrival rate, 
service rate and retrial rate. However, the managers or practitioners would prefer one 
crisp value for one of system characteristics rather than a fuzzy set. In order to overcome 
this problem, we defuzzify the fuzzy values of system characteristics by Yager’s ranking 
index method. 

This section has presented an overview of previous literature narrowing down their 
different contributions to the aim of this paper. The others sections of this paper will 
discuss the following: Section 2 will describe briefly the fuzzy priority single channel 
fuzzy model with non-preemptive, Section 3 will present the adoption of a new 
mathematical model is presented using the trapezoidal membership function, Section 4 
will have illustrate the application of the new mathematical model using a practical 
numerical example, Sections 5 and 6 will discuss the results obtained, and conclusions. 

2 Fuzzy priority queues 

This section considers a fuzzy queueing system in which the server operates under two 
class of non-preemptive priority. The so-called non-preemptive priority of two class 
mean that if there is no interruption of server, the first class customer just goes to the 
head of the queue to wait its turn. 

Suppose that the approximate arrival and service rates are all known. We assume that 
customer’s arrival rates into each priority are according to Poisson arrival rates where λ1, 
is categorised as high priority and λ2, as low priority. Also, the service rates of these two 
priorities are exponential service rates as in different means, represented by µ1 and µ2  
for high and low priority respectively. We refer to this as two class priority as a  
F(M1, M2)/F(M1, M2)/1/PR-NP queue, where the first F(M1, M2) symbol’s denotes the 
fuzzified exponential inter arrival time, the second F(M1, M2) symbol’s denotes the 
fuzzified exponential service time under non-preemptive priority noting that the system 
capacity and population size is infinite. 

Let 
1 12 2
( ), ( ), ( ) and ( )λ μλ μμ w μ x μ y μ z  be the membership functions of the fuzzy sets 

represented as 1 2 1 2, , andλ λ μ μ  respectively. Thus the fuzzy sets 1 2 1 2, , andλ λ μ μ  are 
given as: 

( ){ }11 , ( ) / ,λλ w μ w w W= ∈  (1) 

( ){ }22 , ( ) / ,λλ x μ x x X= ∈  (2) 

( ){ }11 , ( ) / ,μμ y μ y y Y= ∈  (3) 

and 

( ){ }22 , ( ) / .μμ z μ z z Z= ∈  (4) 
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where W, X, Y and Z are the crisp universal sets of the arrival and service rates, 
respectively. In this study, the system characteristics of interest are the expected number 
of customers in the queue, which is denoted by Lq1(w,x,y,z). Obviously, 

1 2 1 21( , , , )q λ λ μ μL  is a 

fuzzy number when 1 2 1 2, , andλ λ μ μ  are all fuzzy number, based on Zadeh’s extension 
principle (Zadeh, 1978). Then, we have the membership function of the expected number 
of customers in the queue as follows: 

1 12 2

1( , , , ) 11 2 1 2
1

( ), ( ), ( ), ( ) /
( ) ( ) sup min .

( , , , )q λ λ μ μ q

λ μλ μ
L L

w W q
x X
y Y
z Z

μ w μ x μ y μ z z
μ z μ z

z L w x y z∈
∈
∈
∈

⎧ ⎫⎧ ⎫⎪ ⎪ ⎪⎪= = ⎨ ⎨ ⎬⎬
=⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭

 (5) 

and 

1 12 2

2( , , , ) 21 2 1 2
2

( ), ( ), ( ), ( ) /
( ) ( ) sup min .

( , , , )q λ λ μ μ q

λ μλ μ
L L

w W q
x X
y Y
z Z

μ w μ x μ y μ z z
μ z μ z

z L w x y z∈
∈
∈
∈

⎧ ⎫⎧ ⎫⎪ ⎪ ⎪⎪= = ⎨ ⎨ ⎬⎬
=⎪ ⎪⎪ ⎪⎩ ⎭⎩ ⎭

 (6) 

From the results of Gross and Harris (1998) and Morse (1958), we have the expected 
number of customer in the crisp queue of two class priority (M1, M2)/(M1, M2)/1/PR-NP 
queueing system as: 

( )
( )

1 1 1 2 2(1)

1

/ /
,

1
λ ρ μ ρ μ

Lq
ρ
+

=
−

 (7) 

( )
( )

2 1 1 2 2(2)

1

/ /
.

1 (1 )
λ ρ μ ρ μ

Lq
ρ ρ

+
=

− −
 (8) 

where 

1 2
1 2

1 2
, ,λ λρ ρ

μ μ
≡ ≡  (9) 

and 

1 2 1.ρ ρ ρ= + <  (10) 

The equations (7) and (8) are expressed in a complex pattern. Thus, it is difficult to infer 
the shape of the membership function 

1 2
( ) and ( ).

q qL Lμ z μ z  Therefore, we develop a 

mathematical programming technique to find the α-cut of 
1 2 1 21( , , , )q λ λ μ μL  and 

1 2 1 22( , , , )q λ λ μ μL  

on the basis of the extension principle in the next section. 
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3 Parametric NLP approach 

In this section, we employ a parametric NLP approach to construct the membership 
function 

1 2
( ) and ( )

q qL Lμ z μ z  to identify its shape. Zadeh’s extension principle which 

relies on α-cuts of 1qL  and 2 ,qL  for the α-cuts of 1 2 1 2, , andλ λ μ μ  as crisp intervals as: 

{ }11( ) | ( ) ,λλ w W μ x= ∈ ≥α α  (11) 

{ }12 ( ) | ( ) ,λλ x X μ x= ∈ ≥α α  (12) 

{ }11( ) | ( ) ,λμ y Y μ y= ∈ ≥α α  (13) 

and 

{ }22 ( ) | ( ) ,λμ z Z μ z= ∈ ≥α α  (14) 

The fuzzy arrival rates 1 2,λ λ  and fuzzy service rates 1 2,μ μ  with two class priority are 

all fuzzy numbers. Thus, the α-cuts of 1 2 1 2, , andλ λ μ μ  defined in equations (11)–(14) 
are crisp intervals with the following forms: 

{ } { } [ ]1 11( ) min | ( ) , max | ( ) , ,L U
w W w Wλ λλ w μ w w μ w w w∈ ∈⎡ ⎤= ≥ ≥ =⎣ ⎦ α αα α α  (15) 

{ } { } [ ]
2 22 ( ) min | ( ) , max | ( ) , ,L U

x X x Xλ λλ x μ x x μ x x x∈ ∈= ≥ ≥ =⎡ ⎤⎣ ⎦ α αα α α  (16) 

{ } { } [ ]1 11( ) min | ( ) , max | ( ) , ,L U
y Y y Yμ μμ y μ y y μ y y y∈ ∈= ⎡ ≥ ≥ ⎤ =⎣ ⎦ α αα α α  (17) 

and 

{ } { } [ ]
2 22 ( ) min | ( ) , max | ( ) , ,L U

z Z z Zμ μμ z μ z z μ z z z∈ ∈= ≥ ≥ =⎡ ⎤⎣ ⎦ α αα α α  (18) 

According to equations (15-18), the arrival rates and service rates can be represented by 
different α levels of possibility. According to the convexity of a fuzzy number 
(Zimmermann, 2011), the upper and lower bound of 1 2 1 2, , andλ λ μ μ  are functions of α, 
which can be represented respectively, as follows: 

1

1min ( ),L
λw μ−=α α  

1

1max ( ),U
λw μ−=α α  

1 12 2 2

1 1 1 1 1min ( ), max ( ), min ( ), max ( ), min ( ),L U L U L
λ λλ λ λ

x μ x μ y μ y μ z μ− − − − −= = = = =α α α α αα α α α α  

and 
2

1max ( ).U
λ

z μ−=α α  Consequently, to find the membership functions 
1
( )

qLμ z  and 

2
( ),

qLμ z  we can apply the α-cuts approach because the membership functions of 
1
( )

qLμ z  

and 
2
( )

qLμ z  which is defined in equations (5) and (6) is characterised by α, by using 

Zadeh’s extension principle. 
1
( )

qLμ z  and 
2
( )

qLμ z  is the minimum of 
1
( ),λμ w  

2
( ),λμ x  

1 2
( ) and ( ).μ μμ y μ z  From these equations, we need that at least one of the following four 

cases holds: 
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• Case 1: 
1 12 2
( ) , ( ) , ( ) , ( )λ μλ μμ w μ x μ y μ z= ≥ ≥ ≥α α α α  

• Case 2: 
1 12 2
( ) , ( ) , ( ) , ( )λ μλ μμ w μ x μ y μ z≥ = ≥ ≥α α α α  

• Case 3: 
1 12 2
( ) , ( ) , ( ) , ( )λ μλ μμ w μ x μ y μ z≥ ≥ = ≥α α α α  

• Case 4: 
1 12 2
( ) , ( ) , ( ) , ( ) .λ μλ μμ w μ x μ y μ z≥ ≥ ≥ =α α α α  

Such that 

( )
( )

1 1 1 2 2

1

/ /
,

1
λ ρ μ ρ μ

z
ρ
+

=
−

 (19) 

and 

( )
( )

2 1 1 2 2

1

/ /
.

1 (1 )
λ ρ μ ρ μ

z
ρ ρ

+
=

− −
 (20) 

To satisfy 
1
( )

qLμ z =α  and 
2
( ) ,

qLμ z =α  where ρ1, ρ2 and ρ are given in equations (9) and 

(10), respectively. This can be done by means of the parametric NLP technique. For  
Case 1, we have the lower and upper bound of the α-cut of 

1
( )

qLμ z  and 
2
( )

qLμ z  obtained 

via this technique as follows: 

( ) 1 *
1

/ /
, , , ,

1

LB
Min

q

x xw y z
y z

L w x y z R
w
y

⎛ ⎞+⎜ ⎟
⎝ ⎠= ∈
⎛ ⎞−⎜ ⎟
⎝ ⎠

α
 (21) 

s.t. 2 1 2, ( ), ( ), ( )L Uw w w x λ y μ z μ≤ ≤ ∈ ∈ ∈α α α α α  

and 

( ) 1 *
1

/ /
, , , ,

1

UB
Max

q

x xw y z
y z

L w x y z R
w
y

⎛ ⎞+⎜ ⎟
⎝ ⎠= ∈
⎛ ⎞−⎜ ⎟
⎝ ⎠

α
 (22) 

s.t. 2 1 2, ( ), ( ), ( ).L Uw w w x λ y μ z μ≤ ≤ ∈ ∈ ∈α α α α α  

Then we use the same procedure to obtain the lower and upper bounds for Cases 2, 3 and 
4 respectively, in the following manner: 

( ) 2 *
1

/ /
, , , ,

1

LB
Min

q

x xw y z
y z

L w x y z R
w
y

⎛ ⎞+⎜ ⎟
⎝ ⎠= ∈
⎛ ⎞−⎜ ⎟
⎝ ⎠

α
 (23) 

s.t. 1 1 2, ( ), ( ), ( )L Ux x x w λ y μ z μ≤ ≤ ∈ ∈ ∈α α α α α  
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and 

( ) 2 *
1

/ /
, , , ,

1

UB
Max

q

x xw y z
y z

L w x y z R
w
y

⎛ ⎞+⎜ ⎟
⎝ ⎠= ∈
⎛ ⎞−⎜ ⎟
⎝ ⎠

α
 (24) 

s.t. 1 1 2, ( ), ( ), ( )L Ux x x w λ y μ z μ≤ ≤ ∈ ∈ ∈α α α α α  

( ) 3 *
1

/ /
, , , ,

1

LB
Min

q

x xw y z
y z

L w x y z R
w
y

⎛ ⎞+⎜ ⎟
⎝ ⎠= ∈
⎛ ⎞−⎜ ⎟
⎝ ⎠

α
 (25) 

s.t. 1 2 2, ( ), ( ), ( )L Uy y y w λ x λ z μ≤ ≤ ∈ ∈ ∈α α α α α  

and 

( ) 3 *
1

/ /
, , , ,

1

UB
Max

q

x xw y z
y z

L w x y z R
w
y

⎛ ⎞+⎜ ⎟
⎝ ⎠= ∈
⎛ ⎞−⎜ ⎟
⎝ ⎠

α
 (26) 

s.t. 1 2 2, ( ), ( ), ( )L Uy y y w λ x λ z μ≤ ≤ ∈ ∈ ∈α α α α α  

( ) 4 *
1

/ /
, , , ,

1

LB
Min

q

x xw y z
y z

L w x y z R
w
y

⎛ ⎞+⎜ ⎟
⎝ ⎠= ∈
⎛ ⎞−⎜ ⎟
⎝ ⎠

α
 (27) 

s.t. 1 2 1, ( ), ( ), ( )L Uz z z w λ x λ y μ≤ ≤ ∈ ∈ ∈α α α α α  

and 

( ) 4 *
1

/ /
, , , ,

1

UB
Max

q

x xw y z
y z

L w x y z R
w
y

⎛ ⎞+⎜ ⎟
⎝ ⎠= ∈
⎛ ⎞−⎜ ⎟
⎝ ⎠

α
 (28) 

s.t. 1 2 1, ( ), ( ), ( )L Uz z z w λ x λ y μ≤ ≤ ∈ ∈ ∈α α α α α  

According to the definitions of λ1(α), λ2(α), μ1(α) and μ2(α) in equations (15)–(18), we 
can replace w ∈ λ1(α), x ∈ λ2(α), y ∈ μ1(α) and z ∈ μ2(α) with [ , ],L Uw w w∈ α α  

1 1 2 2
[ , ] [ , ]L U L Uw w w w⊆α α α α  and [ , ],L Uz z z∈ α α  respectively. We follow the suggestion of 
Zimmermann (2011) and Kaufmann (1975) to present the α-cut of w, x, y and z in  
nested form. The two possibility levels α1 and α2 imply 

1 1 2 2
[ , ] [ , ],L U L Uw w w w⊆α α α α  
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1 1 2 2
[ , ] [ , ],L U L Ux x x x⊆α α α α  

1 1 2 2
[ , ] [ , ],L U L Uy y y y⊆α α α α  and 

1 1 2 2
[ , ] [ , ],L U L Uz z z z⊆α α α α  when 0 < α1 < 

α2 ≤ 1. 
The smallest value of 31 2 4

1 1 1 1( ) , ( ) , ( ) and ( )LBLB LB LB
q q q qL L L Lα α α α  in equations (21), (23), 

(25) and (27) is the same. Conversely, the largest value of 31 2
1 1 1( ) , ( ) , ( )UBUB UB

q q qL L Lα α α  and 
4

1( )UB
qL α  in equations (22), (24), (26) and (28) is also the same way. In order to construct 

the membership function 
1
( ),

qLμ z  it is necessary to determine the lower bound 1( )LB
qL α  

and the upper bound 1( )UB
qL α  as: 

( ) *
1

/ /
, , , ,

1

LB
Min

q

x xw y z
y z

L w x y z R
w
y

⎛ ⎞+⎜ ⎟
⎝ ⎠= ∈
⎛ ⎞−⎜ ⎟
⎝ ⎠

α
 (29) 

s.t. , , , and ,L U L U L U L Uw w w x x x y y y z z z≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤α α α α α α α α  

and 

( ) *
1

/ /
, , , ,

1

UB
Max

q

x xw y z
y z

L w x y z R
w
y

⎛ ⎞+⎜ ⎟
⎝ ⎠= ∈
⎛ ⎞−⎜ ⎟
⎝ ⎠

α
 (30) 

s.t. , , , and .L U L U L U L Uw w w x x x y y y z z z≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤α α α α α α α α  

At least one of w, x, y and z must be on the boundary of the constraints shown in 
equations (29) and (30). This model includes a set of mathematical programs and 
boundary constraints, which can be regarded as a special case of parametric NLP (Gal, 
1979). 

As α ranges over the interval (0, 1], it is of interest to examine how the optimal 
solutions change with different values for , , , , , , and ,L U L U L U L Uw w x x y y z zα α α α α α α α  interval 

1 1[( ) , ( ) ]LB UB
q qL Lα α  is a crisp closed interval which represents the α-cut of 1.qL  Again 

based on the extension principle and the convexity of a fuzzy number, we obtain 

1 21 1( ) ( )LB UB
q qL L≥α α  and

1 21 1( ) ( )LB UB
q qL L≤α α  for 0 < α2 < α1 ≤ 1. In other words, an increase is 

observed in 1( )LB
qL α  increasing or 1( )UB

qL α  decreasing following an increase in α. Thus, 
these bounds can be used to develop the membership function 

1
( ).

qLμ z  

Let us define an increasing function 1 1( ) : ( ) .LB LB
q qL L→ αα  If both (Lq1)LB and (Lq1)UB 

are invertible with respect to α, the membership function 
1
( )

qLμ z  can be represented by: 

( ) ( )
( ) ( )
( ) ( )

1

1 10 1

1 11 1

1 11 0

( ), ,

( ) 1 ,

( ), .

q

LB LB
q q

LB UB
q qL

UB UB
q q

L z L z L

μ z L z L

R z L z L

= =

= =

= =

⎧ ≤ ≤
⎪
⎪

= ≤ ≤⎨
⎪
⎪ ≤ ≤⎩

α α

α α

α α

 (31) 
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where 1
1( ) [( ) ]LB

qL z L −= α  represent the left shape function and 1
1( ) [( ) ]UB

qR z L −= α  
represent the right shape function, respectively. Nevertheless, it should be noted that 
under most cases 1

1[( ) ]LB
qL −

α  and 1
1[( ) ]UB

qL −
α  cannot be solved analytically. As a result, 

obtaining the shape of 
1qLμ  in closed form is difficult. To this end, we apply the set of 

intervals 1 1
1 1{[( ) ] , [( ) ] | 0 1}LB UB

q qL L− − < ≤α α α  to approximate the shape of 
1
( )

qLμ z  

numerically. In the following section, we provide a solution procedure to compute the 
membership function for α, possibility levels. Similar approach is followed by obtaining 
the expression and corresponding values of membership function 

2
( ),

qLμ z  which 

evaluates the number of customers in the second class. Although one crisp value is 
preferred for one of the system characteristics and this is obtained by Yager’s (1981) 
ranking method since the Yager’s index possesses the property of area compensation. We 
adopt this method for transforming the fuzzy values of system characteristics into crisp 
one to provide suitable values for system characteristics and the recommended suitable 
values of system characteristics are calculated by; 

( )1

0
( )

2

L Ua aR a d+
= ∫ α α

α  (32) 

where ( )a  is a convex fuzzy number and ( , )L Ua aα α  is the α-cut of .a  This method is 
called robust ranking method that possesses the properties of compensation, linearity and 
additivity (Fortemps and Roubens, 1996). 

4 Numerical example 

To illustrate the practical application of this new approach to a priority single queuing 
model, we consider a single operator machine working on the production line with two 
priorities and different service rates. The arrival and service rates are represented as 
trapezoidal fuzzy numbers as: 1 [1, 2, 3, 4],λ =  2 [5, 6, 7, 8],λ =  1 [10, 11, 12, 13]μ =  and 

2 [14, 15, 16, 17],μ =  respectively. The α-cut of the membership functions 
1
( ),λμ w  

12 2
( ), ( ) and ( )μλ μμ x μ y μ z  are can be easily obtained to be [1 + α, 4 – α], [5 + α, 8 – α], 

[10 + α, 13 – α] and [14 + α, 17 – α] respectively. 
We further construct the membership function of upper bound and lower bound of the 

α-cut of 1qL  and 2.qL  When w and x takes its lower bound also y and z take their upper 
bound, the membership function through the equation with constraints given with 
equations (29) yields the following results. 

( )
4 3 2

1 4 3 2

26 120 714 567 ,
53 1,013 8,143 22,542

LB
qL

α

α α α α
α α α α

− + + +
=

− + + +
 (33) 

While, when w and x takes it’s the upper bound also, y and z take their lower bound the 
membership function through the equation with constriants given with equation (30) this 
yields the equation as: 
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( )
4 3 2

1 4 3 2

14 60 840 3,168 ,
41 590 3,388 5,880

UB
qL + − − +

=
+ + + +α

α α α α
α α α α

 (34) 

By the same argument and equation (20), the membership function of 2qL  is given as: 

( )
4 3 2

2 4 3 2

22 12 1,302 2,835 ,
61 1,245 10,063 27, 438

LB
qL − + + +

=
− + + +α

α α α α
α α α α

 (35) 

( )
4 3 2

2 4 3 2

10 132 888 6,336 .
49 750 4,132 6,888

UB
qL + − − +

=
+ + + +α

α α α α
α α α α

 (36) 

The inverse functions of 1 1 2 2( ) , ( ) , ( ) and ( )LB UB LB UB
q q q qL L L Lα α α α  exists which is given as: 

1

189 688( ),
7,514 15,823

688 761( ) 1,
15,823 3,300

761 132( ),
3,300 245

qL

L z z

μ z z

R z z

⎧ ≤ ≤⎪
⎪
⎪= ≤ ≤⎨
⎪
⎪

≤ ≤⎪
⎩

 (37) 

and 

2

945 2,064( ),
9,146 19,343
2,064 2, 449( ) 1,

19,343 3,940
2,449 264( ),
3,940 287

qL

L z z

μ z z

R z z

⎧ ≤ ≤⎪
⎪
⎪= ≤ ≤⎨
⎪
⎪

≤ ≤⎪
⎩

 (38) 

See Table 1 for the α-cut interval queue length both two classes. Likewise, the numerical 
results of the membership function given at different values for α, are shown in Figures 1 
and 2. 

Table 1 α-cut interval queue length both two classes 

α 0.0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 

1( )LB
qL α  0.0025 0.0027 0.0029 0.0031 0.0033 0.0035 0.0037 0.0038 0.0040 0.0042 0.0043 

1( )UB
qL α  0.5387 0.4953 0.4554 0.4188 0.3850 0.3539 0.3252 0.2987 0.2742 0.2515 0.2306 

2( )LB
qL α  0.1033 0.1042 0.1049 0.1055 0.1060 0.1062 0.1063 0.1064 0.1065 0.1066 0.1067 

2( )UB
qL α  0.9198 0.8792 0.8417 0.8069 0.7746 0.7446 0.7166 0.6905 0.6660 0.6431 0.6215 
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Figure 1 The membership function of the expected numbers of customers in the queue for  
Class 1 

Lq1 

1qLμ  

 

Figure 2 The membership function of the expected numbers of customers in the queue for  
Class 2 

2qLμ  

Lq2  

However, we wish to obtain one crisp value inside the closed intervals. Therefore, we 
apply Yager’s ranking index to defuzzify the fuzzy values and then transforming these 
fuzzy values into crisp values. To obtain 1qL  and 2 ,qL  we refer to equations (33) and 
(34) for the lower bound and upper bound of the first priority class, and in the same vein, 
refer to equations (35) and (36) to obtain the bounds for the second priority class. By 
using equation (32), we obtain: 
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( )

( )

4 3 21
1 4 3 20

4 3 2

4 3 2

1

1 26 120 714 567
2 53 1,013 8,143 22,542

14 60 840 3,168 
41 590 3,388 5,880

0.20853

q

q

R L

d

R L

− + + +⎡
= ⎢ − + + +⎣

+ − − + ⎤
+ ⎥+ + + + ⎦

∴ =

∫
α

α α α α
α α α α

α α α α
α α α α

 (39) 

and 

( )

( )

4 3 21
2 4 3 20

4 3 2

4 3 2

2

1 22 12 1,302 2,835
2 61 1, 245 10,063 27,438

10 132 888 6,336 
49 750 4,132 6,888

0.40599

q

q

R L

d

R L

− + + +⎡
= ⎢ − + + +⎣

+ − − + ⎤
+ ⎥+ + + + ⎦

∴ =

∫
α

α α α α
α α α α

α α α α
α α α α

 (40) 

From observation, it can be seen that the exact real value of Lq1 is 0.2085 in priority class 
one is less than the result in priority class two represented by Lq2 is 0.4059. This implies 
that Lq is 0.6144, this is the value for the total queue length of customers in the queue 
with the two class of high and low priority. This leads to obtain new information to the 
service system that the real queue length of customer in class one inside the system 
reflects double queue length of customer in Class 2. The equations (39) and (40) are 
important for the derivation of the inverse functions and the equations also make it easy 
to deal with evaluating the system within the closed form interval [0, 1]. Table 1 
presented the α-cut range of the possibility queue length for each class of priority in the 
single queueing model. 

5 Results and discussion 

The following observations can be drawn from Table 1 for the α-cut queue length of both 
priority classes: 

• At α = 0, the range of the fuzzy queue length of Lq1 (priority class one) is [0.0025, 
0.0043] and [0.1033, 0.1067] for Lq2 (priority class two). This implies that the 
number of customers in the queue with different service rates cannot exceed 0.5387 
and 0.9198 or fall below 0.0025 and 0.1033. 

• At α = 1, the range of the queue length of priority class one is [0.0895, 0.2306] and 
[0.9198, 0.6215] for the priority class two. This implies that the number of customers 
for both classes fall between 0.0043 and 0.2306, and, 0.1067 and 0.6215 
respectively. 

This numerical example, has given useful insights for a queueing system having unequal 
service rates. This includes the information presented for obtaining the expected queue 
length of customers for each class with single channel model. 
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6 Conclusions 

A range of real life situations can be categorised as fuzzy queues with unequal service 
rates, such as in the production line of manufacturing system. Note that the main aim of 
any system is to obtain optimal system performance measures and this paper leads to 
adequately present an approach for obtaining the range of the expected number of 
customers in the queue which will assist managers to properly plan the affairs of the 
production. Also, this paper has presented a unique approach for the development of the 
membership function of fuzzy queues, where the unequal service rates are categorised 
using priority class and represented as fuzzy numbers. The methodology adopted α-cut 
interval to obtain crisp values inside the closed interval, also the numerical example 
assumed the arrival and service rates to be trapezoidal fuzzy numbers. For future work it 
can be highlighted to extend these single fuzzy queues into multiple fuzzy queues 
whether having equal or different service rates within the queueing system. 
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