Preferred Language
Articles
/
jih-1013
Weakly Relative Quasi-Injective Modules
...Show More Authors

    Let R be a commutative ring with unity and let M, N be unitary R-modules. In this research, we give generalizations for the concepts: weakly relative injectivity, relative tightness and weakly injectivity of modules. We call M weakly N-quasi-injective, if for each f  Hom(N,) there exists a submodule X of  such that  f (N)  X ≈ M, where  is the quasi-injective hull of M. And we call M N-quasi-tight, if every quotient N / K of N which embeds in  embeds in M. While we call M weakly quasi-injective if M is weakly N-quasiinjective for every finitely generated R-module N.         Moreover, we generalize some properties of weakly N-injective, N-tight and weakly injective modules to weakly N-quasi-injective, N-quasi-tight and weakly quasi-injective modules respectively. The relations among these concepts are also studied.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
Italian Journal Of Pure And Applied Mathematics
A note on (m, n)-full stability Banach algebra modules relative to an ideal H of Am×n
...Show More Authors

In this paper the concept of (m, n)- fully stable Banach Algebra-module relative to ideal (F − (m, n) − S − B − A-module relative to ideal) is introducing, we study some properties of F − (m, n) − S − B − A-module relative to ideal and another characterization is given

Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
Weakly Small Smiprime Submodules
...Show More Authors
Abstract<p>Let <italic>R</italic> be a commutative ring with an identity, and <italic>G</italic> be a unitary left <italic>R</italic>-module. A proper submodule <italic>H</italic> of an <italic>R</italic>-module <italic>G</italic> is called semiprime if whenever <italic>a ∈ R, y ∈ G, n ∈ Z</italic> <sup>+</sup> and <italic>a<sup>n</sup>y ∈ H</italic>, then <italic>ay ∈ H</italic>. We say that a properi submodule <italic>H</italic> of an <italic>R</italic>-module <italic>G</italic> is a weakly small semiprime, if whenever <ita></ita></p> ... Show More
Scopus Crossref
Publication Date
Wed Jan 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Weakly Nearly Prime Submodules
...Show More Authors

        In this article, unless otherwise established, all rings are commutative with identity and all modules are unitary left R-module. We offer this concept of WN-prime as new generalization of weakly prime submodules. Some basic properties of weakly nearly prime submodules are given. Many characterizations, examples of this concept are stablished.

View Publication Preview PDF
Crossref
Publication Date
Wed Aug 09 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Weakly Prime Submodules
...Show More Authors

Let R be a commutative ring with unity and let M be a left R-module. We define a proper submodule N of M to be a weakly prime if whenever  r  R,  x  M, 0  r x  N implies  x  N  or  r  (N:M). In fact this concept is a generalization of the concept weakly  prime ideal, where a proper ideal P of R is called a weakly prime, if for all a, b  R, 0  a b  P implies a  P or b  P. Various properties of weakly prime submodules are considered. 

View Publication Preview PDF
Publication Date
Sun Sep 05 2010
Journal Name
Baghdad Science Journal
Quasi-posinormal operators
...Show More Authors

In this paper, we introduce a class of operators on a Hilbert space namely quasi-posinormal operators that contain properly the classes of normal operator, hyponormal operators, M–hyponormal operators, dominant operators and posinormal operators . We study some basic properties of these operators .Also we are looking at the relationship between invertibility operator and quasi-posinormal operator .

View Publication Preview PDF
Crossref
Publication Date
Tue Jan 01 2008
Journal Name
Al-mustansiriyah Journal Of Science
Weakly (resp., Closure, Strongly) Perfect Mappings
...Show More Authors

In this paper the concepts of weakly (resp., closure, strongly) Perfect Mappings are defined and the important relationships are studied: (a) Comparison between deferent forms of perfect mappings. (b) Relationship between compositions of deferent forms of perfect mappings. (c) Investigate relationships between deferent forms of perfect mappings and their graphs mappings.

Preview PDF
Publication Date
Wed Apr 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Quasi-inner product spaces of quasi-Sobolev spaces and their completeness
...Show More Authors

      Sequences spaces  , m  ,  p  have called quasi-Sobolev spaces were  introduced   by Jawad . K. Al-Delfi in 2013  [1]. In this  paper , we deal with notion of  quasi-inner product  space  by using concept of  quasi-normed  space which is generalized  to normed space and given a  relationship  between  pre-Hilbert space and a  quasi-inner product space with important  results   and   examples.  Completeness properties in quasi-inner   product space gives  us  concept of  quasi-Hilbert space .  We show  that ,  not  all  quasi-Sobolev spa

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jan 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Pseudo Weakly Closed Submodules and Related Concepts
...Show More Authors

Let  be a commutative ring with identity, and  be a unitary left -module. In this paper we introduce the concept pseudo weakly closed submodule as a generalization of -closed submodules, where a submodule  of an -module  is called a pseudo weakly closed submodule, if for all , there exists a -closed submodule  of  with  is a submodule of  such that . Several basic properties, examples and results of pseudo weakly closed submodules are given. Furthermore the behavior of pseudo weakly closed submodules in class of multiplication modules are studied. On the other hand modules with chain conditions on pseudo weakly closed submodules are established. Also, the relationships of  pseudo weakly closed

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jan 01 2001
Journal Name
Iraqi Journal Of Science
C.F Modules and C.P Modules
...Show More Authors

Let R be a commutative ring with identity. R is said to be P.P ring if every principle ideal of R is projective. Endo proved that R is P.P ring if and only if Rp is an integral domain for each prime ideal P of R and the total quotient ring Rs of R is regular. Also he proved that R is a semi-hereditary ring if and only if Rp is a valuation domain for each prime ideal P of R and the total quotient Rs of R is regular. , and we study some of properties of these modules. In this paper we study analogue of these results in C.F, C.P, F.G.F, F.G.P R-modules.

Preview PDF
Publication Date
Mon May 11 2020
Journal Name
Baghdad Science Journal
The Jacobson Radical of the Endomorphism Semiring of P.Q.- Principal Injective Semimodules
...Show More Authors

 

 In this work, we introduced the Jacobson radical (shortly Rad (Ș)) of the endomorphism semiring Ș =  ( ), provided that  is principal P.Q.- injective semimodule and some related concepts, we studied some properties and added conditions that we needed. The most prominent result is obtained in section three

-If   is a principal self-generator semimodule, then (ȘȘ) = W(Ș).

Subject Classification: 16y60

View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref