Preferred Language
Articles
/
Pxf0fY8BVTCNdQwC0Xq3
Weakly Small Smiprime Submodules
Abstract<p>Let <italic>R</italic> be a commutative ring with an identity, and <italic>G</italic> be a unitary left <italic>R</italic>-module. A proper submodule <italic>H</italic> of an <italic>R</italic>-module <italic>G</italic> is called semiprime if whenever <italic>a ∈ R, y ∈ G, n ∈ Z</italic> <sup>+</sup> and <italic>a<sup>n</sup>y ∈ H</italic>, then <italic>ay ∈ H</italic>. We say that a properi submodule <italic>H</italic> of an <italic>R</italic>-module <italic>G</italic> is a weakly small semiprime, if whenever <italic>a ∈ R, y ∈ G, n∈Z</italic> <sup>+</sup>, (<italic>y</italic>) is small in <italic>G</italic> and 0 ≠ <italic>a<sup>n</sup>y ∈ H</italic>, implies <italic>ay ∈ H</italic>. Many basic properties and characterizations of this type of submodule are given.</p>
Scopus Crossref
Publication Date
Wed Jan 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Weakly Nearly Prime Submodules

        In this article, unless otherwise established, all rings are commutative with identity and all modules are unitary left R-module. We offer this concept of WN-prime as new generalization of weakly prime submodules. Some basic properties of weakly nearly prime submodules are given. Many characterizations, examples of this concept are stablished.

Crossref
View Publication Preview PDF
Publication Date
Wed Aug 09 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Weakly Prime Submodules

Let R be a commutative ring with unity and let M be a left R-module. We define a proper submodule N of M to be a weakly prime if whenever  r  R,  x  M, 0  r x  N implies  x  N  or  r  (N:M). In fact this concept is a generalization of the concept weakly  prime ideal, where a proper ideal P of R is called a weakly prime, if for all a, b  R, 0  a b  P implies a  P or b  P. Various properties of weakly prime submodules are considered. 

View Publication Preview PDF
Publication Date
Mon Aug 26 2019
Journal Name
Iraqi Journal Of Science
On Weakly Second Submodules

    Let  be a non-zero right module over a ring  with identity. The weakly second submodules is studied in this paper. A non-zero submodule  of   is weakly second Submodule when  ,  where ,  and  is a submodule of  implies either  or   . Some connections between these modules and other related modules are investigated and number of conclusions  and characterizations are gained.

Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Jan 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Pseudo Weakly Closed Submodules and Related Concepts

Let  be a commutative ring with identity, and  be a unitary left -module. In this paper we introduce the concept pseudo weakly closed submodule as a generalization of -closed submodules, where a submodule  of an -module  is called a pseudo weakly closed submodule, if for all , there exists a -closed submodule  of  with  is a submodule of  such that . Several basic properties, examples and results of pseudo weakly closed submodules are given. Furthermore the behavior of pseudo weakly closed submodules in class of multiplication modules are studied. On the other hand modules with chain conditions on pseudo weakly closed submodules are established. Also, the relationships of  pseudo weakly closed

... Show More
Crossref
View Publication Preview PDF
Publication Date
Mon Mar 01 2021
Journal Name
Journal Of Physics: Conference Series
On Small Semiprime Submodules
Abstract<p>Let R be a commutative ring with identity, and M be unital (left) R-module. In this paper we introduce and study the concept of small semiprime submodules as a generalization of semiprime submodules. We investigate some basis properties of small semiprime submodules and give some characterizations of them, especially for (finitely generated faithful) multiplication modules.</p>
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Thu Jul 01 2021
Journal Name
Journal Of Physics: Conference Series
J-Small Semiprime Submodules
Abstract<p>Let <italic>R</italic> be a commutative ring with identity and <italic>Y</italic> be an unitary <italic>R</italic>-module. We say a non-zero submodule <italic>s</italic> of <italic>Y</italic> is a <italic>J –</italic> small semiprime if and only if for whenever <italic>i</italic> ∈ <italic>R, y ∈ Y,(Y)</italic> is small in <italic>Y</italic> and <italic>i<sup>2</sup>y</italic> ∈ <italic>S</italic> + <italic>Rad (Y)</italic> implies <italic>iy</italic> ∈ <italic>S.</italic> In this paper, we investigate some properties and chara</p> ... Show More
Scopus Crossref
Publication Date
Tue Mar 14 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On e-Small Submodules

Let M be an R-module, where R is a commutative ring with unity. A submodule N of M is called e-small (denoted by N e  M) if N + K = M, where K e  M implies K = M. We give many properties related with this type of submodules.

View Publication Preview PDF
Publication Date
Thu Jul 01 2021
Journal Name
Iraqi Journal Of Science
Semi -T- Small Submodules

Let  be a ring with identity and  be a submodule of a left - module . A submodule  of  is called - small in  denoted by , in case for any submodule  of ,  implies .  Submodule  of  is called semi -T- small in , denoted by , provided for submodule  of ,  implies that . We studied this concept which is a generalization of the small submodules and obtained some related results

Scopus (3)
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Apr 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Weakly Approximaitly Quasi-Prime Submodules And Related Concepts

           Let R be  commutative Ring , and let T be  unitary left .In this paper ,WAPP-quasi prime submodules are introduced as  new generalization of Weakly quasi prime submodules , where  proper submodule C of an R-module T is called WAPP –quasi prime submodule of T, if whenever 0≠rstϵC, for r, s ϵR , t ϵT, implies that either  r tϵ C +soc   or  s tϵC +soc  .Many examples of characterizations and basic properties are given . Furthermore several characterizations of WAPP-quasi prime submodules in the class of multiplication modules are established.

Crossref
View Publication Preview PDF
Publication Date
Sat Apr 30 2022
Journal Name
Iraqi Journal Of Science
On Quasi-Small Prime Submodules

     Let  be a commutative  ring with identity , and  be a unitary (left) R-module. A proper submodule  of  is said to be quasi- small prime submodule  , if whenever   with  and , then either or . In this paper ,we give a comprehensive study of quasi- small prime submodules.

Scopus (2)
Crossref (1)
Scopus Crossref
View Publication Preview PDF