Throughout this paper R represents a commutative ring with identity and all R-modules M are unitary left R-modules. In this work we introduce the notion of S-maximal submodules as a generalization of the class of maximal submodules, where a proper submodule N of an R-module M is called S-maximal, if whenever W is a semi essential submodule of M with N ⊊ W ⊆ M, implies that W = M. Various properties of an S-maximal submodule are considered, and we investigate some relationships between S-maximal submodules and some others related concepts such as almost maximal submodules and semimaximal submodules. Also, we study the behavior of S-maximal submodules in the class of multiplication modules. Farther more we give S-Jacobson radical of rings and modules.
Throughout this paper R represents a commutative ring with identity and all R-modules M are unitary left R-modules. In this work we introduce the notion of S-maximal submodules as a generalization of the class of maximal submodules, where a proper submodule N of an R-module M is called S-maximal, if whenever W is a semi essential submodule of M with N ? W ? M, implies that W = M. Various properties of an S-maximal submodule are considered, and we investigate some relationships between S-maximal submodules and some others related concepts such as almost maximal submodules and semimaximal submodules. Also, we study the behavior of S-maximal submodules in the class of multiplication modules. Farther more we give S-Jacobson radical of ri
... Show MoreIn this paper, we introduce and study the concept of S-coprime submodules, where a proper submodule N of an R-module M is called S-coprime submodule if M N is S-coprime Rmodule. Many properties about this concept are investigated.
Let L be a commutative ring with identity and let W be a unitary left L- module. A submodule D of an L- module W is called s- closed submodule denoted by D ≤sc W, if D has no proper s- essential extension in W, that is , whenever D ≤ W such that D ≤se H≤ W, then D = H. In this paper, we study modules which satisfies the ascending chain conditions (ACC) and descending chain conditions (DCC) on this kind of submodules.
In this work we discuss the concept of pure-maximal denoted by (Pr-maximal) submodules as a generalization to the type of R- maximal submodule, where a proper submodule of an R-module is called Pr- maximal if ,for any submodule of W is a pure submodule of W, We offer some properties of a Pr-maximal submodules, and we give Definition of the concept, near-maximal, a proper submodule
of an R-module is named near (N-maximal) whensoever is pure submodule of such that then K=.Al so we offer the concept Pr-module, An R-module W is named Pr-module, if every proper submodule of is Pr-maximal. A ring is named Pr-ring if whole proper ideal of is a Pr-maximal ideal, we offer the concept pure local (Pr-loc
... Show MoreLet S be a commutative ring with identity, and A is an S-module. This paper introduced an important concept, namely strongly maximal submodule. Some properties and many results were proved as well as the behavior of that concept with its localization was studied and shown.
Let be a commutative ring with identity and be an -module. In this work, we present the concept of semi--maximal sumodule as a generalization of -maximal submodule.
We present that a submodule of an -module is a semi--maximal (sortly --max) submodule if is a semisimple -module (where is a submodule of ). We investegate some properties of these kinds of modules.
A non-zero submodule N of M is called essential if N L for each non-zero submodule L of M. And a non-zero submodule K of M is called semi-essential if K P for each non-zero prime submodule P of M. In this paper we investigate a class of submodules that lies between essential submodules and semi-essential submodules, we call these class of submodules weak essential submodules.
Let be a right module over a ring with identity. The semisecond submodules are studied in this paper. A nonzero submodule of is called semisecond if for each . More information and characterizations about this concept is provided in our work.
"In this article, "we introduce the concept of a WE-Prime submodule", as a stronger form of a weakly prime submodule". "And as a "generalization of WE-Prime submodule", we introduce the concept of WE-Semi-Prime submodule, which is also a stronger form of a weakly semi-prime submodule". "Various basic properties of these two concepts are discussed. Furthermore, the relationships between "WE-Prime submodules and weakly prime submodules" and studied". "On the other hand the relation between "WE-Prime submodules and WE-Semi-Prime submodules" are consider". "Also" the relation of "WE-Sime-Prime submodules and weakly semi-prime submodules" are explained. Behind that, some characterizations of these concepts are investigated".
... Show More