Preferred Language
Articles
/
jeasiq-41
A Comparison of Bayes Estimators for the parameter of Rayleigh Distribution with Simulation
...Show More Authors

   A comparison of double informative and non- informative priors assumed for the parameter of Rayleigh distribution is considered. Three different sets of double priors are included, for a single unknown parameter of Rayleigh distribution. We have assumed three double priors: the square root inverted gamma (SRIG) - the natural conjugate family of priors distribution, the square root inverted gamma – the non-informative distribution, and the natural conjugate family of priors - the non-informative distribution as double priors .The data is generating form three cases from Rayleigh distribution for different samples sizes (small, medium, and large). And Bayes estimators for the parameter is derived under a squared error loss function and weighted squared error loss function) in the cases of the three different sets of prior distributions .Simulations is employed to obtain results. And determine the best estimator according to the smallest value of mean squared error and weighted mean squared error. We found  that the best estimation for the parameter for all sample sizes (n) , when the double prior distribution for  is SRIG - the natural conjugate family of priors distribution with values (a=5, b=0.5, =8, =0.5) and (a=8, b=1, =5, =1) for the  true value of  respectively .Also ,we obtained the best estimation for  when the double prior distribution for  is the natural conjugate family of priors-non-informative distribution with values(=0.5, =5, c=1) for  the true value of ().

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Jun 01 2022
Journal Name
Baghdad Science Journal
On New Weibull Inverse Lomax Distribution with Applications
...Show More Authors

In this paper, simulation studies and applications of the New Weibull-Inverse Lomax (NWIL) distribution were presented. In the simulation studies, different sample sizes ranging from 30, 50, 100, 200, 300, to 500 were considered. Also, 1,000 replications were considered for the experiment. NWIL is a fat tail distribution. Higher moments are not easily derived except with some approximations. However, the estimates have higher precisions with low variances. Finally, the usefulness of the NWIL distribution was illustrated by fitting two data  sets

View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sat Dec 01 2012
Journal Name
Journal Of Economics And Administrative Sciences
Finding the best estimation of generalized for failure rates by using Simulation
...Show More Authors

The statistical distributions study aimed to obtain on best descriptions  of variable sets phenomena, which each of them got one behavior of that distributions .  The estimation operations study for that distributions considered of important things which could n't canceled in variable behavior study, as result  this research came as trial for reaching to best method for information distribution estimation which is generalized linear failure rate distribution, throughout studying the theoretical sides by depending on statistical posteriori methods  like greatest ability, minimum squares method and Mixing method (suggested method).        

The research

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jan 01 2014
Journal Name
American Journal Of Mathematics And Statistics
Preliminary Test Single Stage Shrinkage Estimator for the Scale Parameter of Gamma Distribution
...Show More Authors

Publication Date
Thu Aug 25 2016
Journal Name
International Journal Of Mathematics Trends And Technology
Pretest Single Stage Shrinkage Estimator for the Shape Parameter of the Power Function Distribution
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Thu Sep 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Methods for Estimating Mixture of Linear Regression Models with Application
...Show More Authors

 A mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Oct 21 2024
Journal Name
Iraqi Statisticians Journal
On Inference of Finite Mixture of Rayleigh Distribution by Gibbs Sampler and Metropolis-Hastings
...Show More Authors

Inferential methods of statistical distributions have reached a high level of interest in recent years. However, in real life, data can follow more than one distribution, and then mixture models must be fitted to such data. One of which is a finite mixture of Rayleigh distribution that is widely used in modelling lifetime data in many fields, such as medicine, agriculture and engineering. In this paper, we proposed a new Bayesian frameworks by assuming conjugate priors for the square of the component parameters. We used this prior distribution in the classical Bayesian, Metropolis-hasting (MH) and Gibbs sampler methods. The performance of these techniques were assessed by conducting data which was generated from two and three-component mixt

... Show More
View Publication
Publication Date
Sun Dec 01 2019
Journal Name
Journal Of Economics And Administrative Sciences
Estimating the reliability function of Kumaraswamy distribution data
...Show More Authors

The aim of this study is to estimate the parameters and reliability function for kumaraswamy distribution of this two positive parameter  (a,b > 0), which is a continuous probability that has many characterstics with the beta distribution with extra advantages.

The shape of the function for this distribution and the most important characterstics are explained and estimated the two parameter (a,b) and the reliability function for this distribution by using the maximum likelihood method (MLE) and Bayes methods. simulation experiments are conducts to explain the behaviour of the estimation methods for different sizes depending on the mean squared error criterion the results show that the Bayes is bet

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Dec 04 2016
Journal Name
Baghdad Science Journal
Estimating Parametersof Gumbel Distribution For Maximum Values By using Simulation
...Show More Authors

In this research estimated the parameters of Gumbel distribution Type 1 for Maximum values through the use of two estimation methods:- Moments (MoM) and Modification Moments(MM) Method. the Simulation used for comparison between each of the estimation methods to reach the best method to estimate the parameters where the simulation was to generate random data follow Gumbel distributiondepending on three models of the real values of the parameters for different sample sizes with samples of replicate (R=500).The results of the assessment were put in tables prepared for the purpose of comparison, which made depending on the mean squares error (MSE).

View Publication Preview PDF
Crossref
Publication Date
Tue Sep 08 2020
Journal Name
Baghdad Science Journal
A comparison among Different Methods for Estimating Regression Parameters with Autocorrelation Problem under Exponentially Distributed Error
...Show More Authors

Multiple linear regressions are concerned with studying and analyzing the relationship between the dependent variable and a set of explanatory variables. From this relationship the values of variables are predicted. In this paper the multiple linear regression model and three covariates were studied in the presence of the problem of auto-correlation of errors when the random error distributed the distribution of exponential. Three methods were compared (general least squares, M robust, and Laplace robust method). We have employed the simulation studies and calculated the statistical standard mean squares error with sample sizes (15, 30, 60, 100). Further we applied the best method on the real experiment data representing the varieties of

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Thu Jun 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Analysis of Models (NAGARCH & APGARCH) by Using Simulations
...Show More Authors

Simulation experiments are a means of solving in many fields, and it is the process of designing a model of the real system in order to follow it and identify its behavior through certain models and formulas written according to a repeating software style with a number of iterations. The aim of this study is to build a model  that deals with the behavior suffering from the state of (heteroskedasticity) by studying the models (APGARCH & NAGARCH) using (Gaussian) and (Non-Gaussian) distributions for different sample sizes (500,1000,1500,2000) through the stage of time series analysis (identification , estimation, diagnostic checking and prediction). The data was generated using the estimations of the parameters resulting f

... Show More
View Publication Preview PDF
Crossref