Preferred Language
Articles
/
nBdDA5ABVTCNdQwCrIIY
Preliminary Test Single Stage Shrinkage Estimator for the Scale Parameter of Gamma Distribution
...Show More Authors

Publication Date
Thu Aug 25 2016
Journal Name
International Journal Of Mathematics Trends And Technology
Pretest Single Stage Shrinkage Estimator for the Shape Parameter of the Power Function Distribution
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Sun Nov 04 2012
Journal Name
Journal Of The College Of Basic Education
Double Stage Shrinkage Estimator in Pareto Distribution
...Show More Authors

View Publication Preview PDF
Publication Date
Sat Oct 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Bayesian Estimator for the Scale Parameter of the Normal Distribution Under Different Prior Distributions
...Show More Authors

In this study, we used Bayesian method to estimate scale parameter for the normal distribution. By considering three different prior distributions such as the square root inverted gamma (SRIG) distribution and the non-informative prior distribution and the natural conjugate family of priors. The Bayesian estimation based on squared error loss function, and compared it with the classical estimation methods to estimate the scale parameter for the normal distribution, such as the maximum likelihood estimation and th

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Dec 30 2012
Journal Name
Journal Of Kufa For Mathematics And Computer
On Jeffery Prior Distribution in Modified Double Stage Shrinkage-Bayesian Estimator for Exponential Mean
...Show More Authors

View Publication Preview PDF
Publication Date
Thu Jun 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Bayes Analysis for the Scale Parameter of Gompertz Distribution
...Show More Authors

In this paper, we investigate the behavior of the bayes estimators, for the scale parameter of the Gompertz distribution under two different loss functions such as, the squared error loss function, the exponential loss function (proposed), based different double prior distributions represented as erlang with inverse levy prior, erlang with non-informative prior, inverse levy with non-informative prior and erlang with chi-square prior.

The simulation method was fulfilled to obtain the results, including the estimated values and the mean square error (MSE) for the scale parameter of the Gompertz distribution, for different cases for the scale parameter of the Gompertz distr

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jun 01 2014
Journal Name
Journal Of Economics And Administrative Sciences
Different Methods for Estimating Location Parameter & Scale Parameter for Extreme Value Distribution
...Show More Authors

      In this study, different methods were used for estimating location parameter  and scale parameter for extreme value distribution, such as maximum likelihood estimation (MLE) , method of moment  estimation (ME),and approximation  estimators based on percentiles which is called white method in estimation, as the extreme value distribution is one of exponential distributions. Least squares estimation (OLS) was used, weighted least squares estimation (WLS), ridge regression estimation (Rig), and adjusted ridge regression estimation (ARig) were used. Two parameters for expected value to the percentile  as estimation for distribution f

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Dec 05 2010
Journal Name
Baghdad Science Journal
Pre-Test Single and Double Stage Shrunken Estimators for the Mean of Normal Distribution with Known Variance
...Show More Authors

This paper is concerned with pre-test single and double stage shrunken estimators for the mean (?) of normal distribution when a prior estimate (?0) of the actule value (?) is available, using specifying shrinkage weight factors ?(?) as well as pre-test region (R). Expressions for the Bias [B(?)], mean squared error [MSE(?)], Efficiency [EFF(?)] and Expected sample size [E(n/?)] of proposed estimators are derived. Numerical results and conclusions are drawn about selection different constants included in these expressions. Comparisons between suggested estimators, with respect to classical estimators in the sense of Bias and Relative Efficiency, are given. Furthermore, comparisons with the earlier existing works are drawn.

View Publication Preview PDF
Crossref
Publication Date
Sat Nov 01 2014
Journal Name
International Journal Of Statistics
Single and Double Stage Shrinkage Estimators for the Normal Mean with the Variance Cases
...Show More Authors

View Publication
Publication Date
Sat Jan 01 2011
Journal Name
Journal Of Engineering
TWO-PARAMETER GAMMA DISTRIBUTION AND LOG NORMAL DISTRIBUTION FOR DERIVATION OF SYNTHETIC UNIT HYDROGRAPH
...Show More Authors

Most available methods for unit hydrographs (SUH) derivation involve manual, subjective fitting of
a hydrograph through a few data points. The use of probability distributions for the derivation of synthetic
hydrographs had received much attention because of its similarity with unit hydrograph properties. In this
paper, the use of two flexible probability distributions is presented. For each distribution the unknown
parameters were derived in terms of the time to peak(tp), and the peak discharge(Qp). A simple Matlab
program is prepared for calculating these parameters and their validity was checked using comparison
with field data. Application to field data shows that the gamma and lognormal distributions had fit well.<

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Jan 02 2011
Journal Name
Education College Journal/al-mustansiriyah
Double Stage Shrinkage Estimators of Two Parameters Generalized Rayleigh Distribution
...Show More Authors