Preferred Language
Articles
/
jeasiq-41
A Comparison of Bayes Estimators for the parameter of Rayleigh Distribution with Simulation
...Show More Authors

   A comparison of double informative and non- informative priors assumed for the parameter of Rayleigh distribution is considered. Three different sets of double priors are included, for a single unknown parameter of Rayleigh distribution. We have assumed three double priors: the square root inverted gamma (SRIG) - the natural conjugate family of priors distribution, the square root inverted gamma – the non-informative distribution, and the natural conjugate family of priors - the non-informative distribution as double priors .The data is generating form three cases from Rayleigh distribution for different samples sizes (small, medium, and large). And Bayes estimators for the parameter is derived under a squared error loss function and weighted squared error loss function) in the cases of the three different sets of prior distributions .Simulations is employed to obtain results. And determine the best estimator according to the smallest value of mean squared error and weighted mean squared error. We found  that the best estimation for the parameter for all sample sizes (n) , when the double prior distribution for  is SRIG - the natural conjugate family of priors distribution with values (a=5, b=0.5, =8, =0.5) and (a=8, b=1, =5, =1) for the  true value of  respectively .Also ,we obtained the best estimation for  when the double prior distribution for  is the natural conjugate family of priors-non-informative distribution with values(=0.5, =5, c=1) for  the true value of ().

 

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Oct 20 2018
Journal Name
Journal Of Economics And Administrative Sciences
The Effect of Extreme Values on Streeter-Phleps Model Parameter Estimators With Application Abstract
...Show More Authors

Abstract

   The extremes effects in parameters readings which are BOD (Biological Oxygen Demands) and DO(Dissolved Oxygen) can caused error estimating of the model’s parameters which used to determine the ratio of de oxygenation and re oxygenation of the dissolved oxygen(DO),then that will caused launch big amounts of the sewage pollution  water to the rivers and it’s turn is effect in negative form on the ecosystem life and the different types of the water wealth.

   As result of what mention before this research came to employees Streeter-Phleps model parameters estimation which are (Kd,Kr) the de oxygenation and re oxygenation ratios on respect

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed May 10 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Double Stage Shrinkage-Bayesian Estimator for the Scale Parameter of Exponential Distribution
...Show More Authors

  This paper is concerned with Double Stage Shrinkage Bayesian (DSSB) Estimator for lowering the mean squared error of classical estimator ˆ q for the scale parameter (q) of an exponential distribution in a region (R) around available prior knowledge (q0) about the actual value (q) as initial estimate as well as to reduce the cost of experimentations.         In situation where the experimentations are time consuming or very costly, a Double Stage procedure can be used to reduce the expected sample size needed to obtain the estimator. This estimator is shown to have smaller mean squared error for certain choice of the shrinkage weight factor y( ) and for acceptance region R. Expression for

... Show More
View Publication Preview PDF
Publication Date
Thu Jul 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Bayesian Approach for estimating the unknown Scale parameter of Erlang Distribution Based on General Entropy Loss Function
...Show More Authors

We are used Bayes estimators for unknown scale parameter  when shape Parameter  is known of Erlang distribution. Assuming different informative priors for unknown scale  parameter. We derived The posterior density with posterior mean and posterior variance using different informative priors for unknown scale parameter  which are the inverse exponential distribution, the inverse chi-square distribution, the inverse Gamma distribution, and the standard Levy distribution as prior. And we derived Bayes estimators based on the general entropy loss function (GELF) is used the Simulation method to obtain the results. we generated different cases for the parameters of the Erlang model, for different sample sizes. The estimates have been comp

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Comparison of Some Methods for Estimating the Survival Function and Failure Rate for the Exponentiated Expanded Power Function Distribution
...Show More Authors

 

     We have presented the distribution of the exponentiated expanded power function (EEPF) with four parameters, where this distribution was created by the exponentiated expanded method created by the scientist Gupta to expand the exponential distribution by adding a new shape parameter to the cumulative function of the distribution, resulting in a new distribution, and this method is characterized by obtaining a distribution that belongs for the exponential family. We also obtained a function of survival rate and failure rate for this distribution, where some mathematical properties were derived, then we used the method of maximum likelihood (ML) and method least squares developed  (LSD)

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Apr 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
On Reliability Estimation for the Exponential Distribution Based on Monte Carlo Simulation
...Show More Authors

        This Research deals with estimation the reliability function for two-parameters Exponential distribution, using different estimation methods ; Maximum likelihood, Median-First Order Statistics, Ridge Regression, Modified Thompson-Type Shrinkage and Single Stage Shrinkage methods. Comparisons among the estimators were made using Monte Carlo Simulation based on statistical indicter mean squared error (MSE) conclude that the shrinkage method perform better than the other methods

View Publication Preview PDF
Crossref
Publication Date
Sun Dec 01 2019
Journal Name
Baghdad Science Journal
The Gumbel- Pareto Distribution: Theory and Applications
...Show More Authors

In this paper, for the first time we introduce a new four-parameter model called the Gumbel- Pareto distribution by using the T-X method. We obtain some of its mathematical properties. Some structural properties of the new distribution are studied. The method of maximum likelihood is used for estimating the model parameters. Numerical illustration and an application to a real data set are given to show the flexibility and potentiality of the new model.

View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Semi parametric Estimators for Quantile Model via LASSO and SCAD with Missing Data
...Show More Authors

In this study, we made a comparison between LASSO & SCAD methods, which are two special methods for dealing with models in partial quantile regression. (Nadaraya & Watson Kernel) was used to estimate the non-parametric part ;in addition, the rule of thumb method was used to estimate the smoothing bandwidth (h). Penalty methods proved to be efficient in estimating the regression coefficients, but the SCAD method according to the mean squared error criterion (MSE) was the best after estimating the missing data using the mean imputation method

View Publication Preview PDF
Crossref
Publication Date
Wed Mar 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Comparing Some Methods of Estimating the Parameters and Survival Function of a Log-logistic Distribution with a Practical Application
...Show More Authors

The Log-Logistic distribution is one of the important statistical distributions as it can be applied in many fields and biological experiments and other experiments, and its importance comes from the importance of determining the survival function of those experiments. The research will be summarized in making a comparison between the method of maximum likelihood and the method of least squares and the method of weighted least squares to estimate the parameters and survival function of the log-logistic distribution using the comparison criteria MSE, MAPE, IMSE, and this research was applied to real data for breast cancer patients. The results showed that the method of Maximum likelihood best in the case of estimating the paramete

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Sep 01 2010
Journal Name
Journal Of Economics And Administrative Sciences
Using simulation to estimate parameters and reliability function for extreme value distribution
...Show More Authors

   This study includes Estimating scale parameter, location parameter  and reliability function  for Extreme Value (EXV) distribution by two methods, namely: -
- Maximum Likelihood Method (MLE).
- Probability Weighted Moments Method (PWM).

 Used simulations to generate the required samples to estimate the parameters and reliability function of different sizes(n=10,25,50,100) , and give real values for the parameters are and , replicate the simulation experiments (RP=1000)

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Dec 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Comparison between the Methods of Ridge Regression and Liu Type to Estimate the Parameters of the Negative Binomial Regression Model Under Multicollinearity Problem by Using Simulation
...Show More Authors

The problem of Multicollinearity is one of the most common problems, which deal to a large extent with the internal correlation between explanatory variables. This problem is especially Appear in economics and applied research, The problem of Multicollinearity has a negative effect on the regression model, such as oversized variance degree and estimation of parameters that are unstable when we use the Least Square Method ( OLS), Therefore, other methods were used to estimate the parameters of the negative binomial model, including the estimated Ridge Regression Method and the Liu type estimator, The negative binomial regression model is a nonline

... Show More
View Publication Preview PDF
Crossref