Preferred Language
Articles
/
bsj-2620
Survival estimation for singly type one censored sample based on generalized Rayleigh distribution
...Show More Authors

This paper interest to estimation the unknown parameters for generalized Rayleigh distribution model based on censored samples of singly type one . In this paper the probability density function for generalized Rayleigh is defined with its properties . The maximum likelihood estimator method is used to derive the point estimation for all unknown parameters based on iterative method , as Newton – Raphson method , then derive confidence interval estimation which based on Fisher information matrix . Finally , testing whether the current model ( GRD ) fits to a set of real data , then compute the survival function and hazard function for this real data.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Sep 22 2019
Journal Name
Baghdad Science Journal
Estimation of Survival Function for Rayleigh Distribution by Ranking function:-
...Show More Authors

In this article, performing and deriving te probability density function for Rayleigh distribution is done by using ordinary least squares estimator method and Rank set estimator method. Then creating interval for scale parameter of Rayleigh distribution. Anew method using   is used for fuzzy scale parameter. After that creating the survival and hazard functions for two ranking functions are conducted to show which one is beast.

View Publication Preview PDF
Scopus (5)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Baghdad Science Journal
Estimating the Parameters of Exponential-Rayleigh Distribution under Type-I Censored Data
...Show More Authors

     This paper discusses estimating the two scale parameters of Exponential-Rayleigh distribution for singly type one censored data which is one of the most important Rights censored data, using the maximum likelihood estimation method (MLEM) which is one of the most popular and widely used classic methods, based on an iterative procedure such as the Newton-Raphson to find estimated values for these two scale parameters by using real data for COVID-19 was taken from the Iraqi Ministry of Health and Environment, AL-Karkh General Hospital. The duration of the study was in the interval 4/5/2020 until 31/8/2020 equivalent to 120 days, where the number of patients who entered the (study) hospital with sample size is (n=785). The number o

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Mon Jun 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
On Bayesian Estimation of System Reliability in Stress – Strength Model Based on Generalized Inverse Rayleigh Distribution
...Show More Authors
Abstract<p>The parameter and system reliability in stress-strength model are estimated in this paper when the system contains several parallel components that have strengths subjects to common stress in case when the stress and strengths follow Generalized Inverse Rayleigh distribution by using different Bayesian estimation methods. Monte Carlo simulation introduced to compare among the proposal methods based on the Mean squared Error criteria.</p>
View Publication
Scopus (1)
Crossref (3)
Scopus Crossref
Publication Date
Tue Mar 01 2011
Journal Name
Journal Of Economic And Administrative Science
On Shrinkage Estimation for Generalized Exponential Distribution
...Show More Authors

Preview PDF
Publication Date
Tue Jun 01 2021
Journal Name
Baghdad Science Journal
Comparing Weibull Stress – Strength Reliability Bayesian Estimators for Singly Type II Censored Data under Different loss Functions
...Show More Authors

     The stress(Y) – strength(X) model reliability Bayesian estimation which defines life of a component with strength X and stress Y (the component fails if and only if at any time the applied stress is greater than its strength) has been studied, then the reliability; R=P(Y<X), can be considered as a measure of the component performance. In this paper, a Bayesian analysis has been considered for R when the two variables X and Y are independent Weibull random variables with common parameter α in order to study the effect of each of the two different scale parameters β and λ; respectively, using three different [weighted, quadratic and entropy] loss functions under two different prior functions [Gamma and extension of Jeffery

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Clarivate Crossref
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
An Efficient Shrinkage Estimators For Generalized Inverse Rayleigh Distribution Based On Bounded And Series Stress-Strength Models
...Show More Authors
Abstract<p>In this paper, we investigate two stress-strength models (Bounded and Series) in systems reliability based on Generalized Inverse Rayleigh distribution. To obtain some estimates of shrinkage estimators, Bayesian methods under informative and non-informative assumptions are used. For comparison of the presented methods, Monte Carlo simulations based on the Mean squared Error criteria are applied.</p>
View Publication
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Mon Jul 01 2024
Journal Name
Alexandria Engineering Journal
Comparison of some Bayesian estimation methods for type-I generalized extreme value distribution with simulation
...Show More Authors

The Weibull distribution is considered one of the Type-I Generalized Extreme Value (GEV) distribution, and it plays a crucial role in modeling extreme events in various fields, such as hydrology, finance, and environmental sciences. Bayesian methods play a strong, decisive role in estimating the parameters of the GEV distribution due to their ability to incorporate prior knowledge and handle small sample sizes effectively. In this research, we compare several shrinkage Bayesian estimation methods based on the squared error and the linear exponential loss functions. They were adopted and compared by the Monte Carlo simulation method. The performance of these methods is assessed based on their accuracy and computational efficiency in estimati

... Show More
View Publication
Scopus (4)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Palestine Journal Of Mathematics
STATISTICAL PROPERTIES OF GENERALIZED EXPONENTIAL RAYLEIGH DISTRIBUTION
...Show More Authors

This paper demonstrates the construction of a modern generalized Exponential Rayleigh distribution by merging two distributions with a single parameter. The "New generalized Exponential-Rayleigh distribution" specifies joining the Reliability function of exponential pdf with the Reliability function of Rayleigh pdf, and then adding a shape parameter for this distribution. Finally, the mathematical and statistical characteristics of such a distribution are accomplished

View Publication Preview PDF
Scopus (3)
Scopus
Publication Date
Mon Sep 23 2019
Journal Name
Baghdad Science Journal
Hazard Rate Estimation Using Varying Kernel Function for Censored Data Type I
...Show More Authors

     In this research, several estimators concerning the estimation are introduced. These estimators are closely related to the hazard function by using one of the nonparametric methods namely the kernel function for censored data type with varying bandwidth and kernel boundary. Two types of bandwidth are used:  local bandwidth and global bandwidth. Moreover, four types of boundary kernel are used namely: Rectangle, Epanechnikov, Biquadratic and Triquadratic and the proposed function was employed with all kernel functions. Two different simulation techniques are also used for two experiments to compare these estimators. In most of the cases, the results have proved that the local bandwidth is the best for all the

... Show More
View Publication Preview PDF
Publication Date
Thu Dec 01 2011
Journal Name
Journal Of Economics And Administrative Sciences
On Shrunken Estimation of Generalized Exponential Distribution
...Show More Authors

This paper deal with the estimation of the shape parameter (a) of Generalized Exponential (GE) distribution when the scale parameter (l) is known via preliminary test single stage shrinkage estimator (SSSE) when a prior knowledge (a0) a vailable about the shape parameter as initial value due past experiences as well as suitable region (R) for testing this prior knowledge.

The Expression for the Bias, Mean squared error [MSE] and Relative Efficiency [R.Eff(×)] for the proposed estimator are derived. Numerical results about beha

... Show More
View Publication Preview PDF
Crossref