Preferred Language
Articles
/
2RhmgZUBVTCNdQwCEy4z
On Inference of Finite Mixture of Rayleigh Distribution by Gibbs Sampler and Metropolis-Hastings
...Show More Authors

Inferential methods of statistical distributions have reached a high level of interest in recent years. However, in real life, data can follow more than one distribution, and then mixture models must be fitted to such data. One of which is a finite mixture of Rayleigh distribution that is widely used in modelling lifetime data in many fields, such as medicine, agriculture and engineering. In this paper, we proposed a new Bayesian frameworks by assuming conjugate priors for the square of the component parameters. We used this prior distribution in the classical Bayesian, Metropolis-hasting (MH) and Gibbs sampler methods. The performance of these techniques were assessed by conducting data which was generated from two and three-component mixture of the Rayleigh distribution according to several scenarios and comparing the results of the scenarios by calculating the mean of classification successful rate (MCSR) and the mean of mean square error(MMSE). The results showed that Gibbs sampler algorithm yields a better computation results than the others in terms of MMSE and MCSR.

View Publication
Publication Date
Fri Dec 30 2022
Journal Name
Journal Of Mathematics
Estimation of Parameters of Finite Mixture of Rayleigh Distribution by the Expectation-Maximization Algorithm
...Show More Authors

In the lifetime process in some systems, most data cannot belong to one single population. In fact, it can represent several subpopulations. In such a case, the known distribution cannot be used to model data. Instead, a mixture of distribution is used to modulate the data and classify them into several subgroups. The mixture of Rayleigh distribution is best to be used with the lifetime process. This paper aims to infer model parameters by the expectation-maximization (EM) algorithm through the maximum likelihood function. The technique is applied to simulated data by following several scenarios. The accuracy of estimation has been examined by the average mean square error (AMSE) and the average classification success rate (ACSR). T

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Jan 11 2023
Journal Name
Mathematical Problems In Engineering
Bayesian Methods for Estimation the Parameters of Finite Mixture of Inverse Rayleigh Distribution
...Show More Authors

Methods of estimating statistical distribution have attracted many researchers when it comes to fitting a specific distribution to data. However, when the data belong to more than one component, a popular distribution cannot be fitted to such data. To tackle this issue, mixture models are fitted by choosing the correct number of components that represent the data. This can be obvious in lifetime processes that are involved in a wide range of engineering applications as well as biological systems. In this paper, we introduce an application of estimating a finite mixture of Inverse Rayleigh distribution by the use of the Bayesian framework when considering the model as Markov chain Monte Carlo (MCMC). We employed the Gibbs sampler and

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Wed Jun 01 2022
Journal Name
Baghdad Science Journal
Variable Selection Using aModified Gibbs Sampler Algorithm with Application on Rock Strength Dataset
...Show More Authors

Variable selection is an essential and necessary task in the statistical modeling field. Several studies have triedto develop and standardize the process of variable selection, but it isdifficultto do so. The first question a researcher needs to ask himself/herself what are the most significant variables that should be used to describe a given dataset’s response. In thispaper, a new method for variable selection using Gibbs sampler techniqueshas beendeveloped.First, the model is defined, and the posterior distributions for all the parameters are derived.The new variable selection methodis tested usingfour simulation datasets. The new approachiscompared with some existingtechniques: Ordinary Least Squared (OLS), Least Absolute Shrinkage

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Sun Sep 22 2019
Journal Name
Baghdad Science Journal
Estimation of Survival Function for Rayleigh Distribution by Ranking function:-
...Show More Authors

In this article, performing and deriving te probability density function for Rayleigh distribution is done by using ordinary least squares estimator method and Rank set estimator method. Then creating interval for scale parameter of Rayleigh distribution. Anew method using   is used for fuzzy scale parameter. After that creating the survival and hazard functions for two ranking functions are conducted to show which one is beast.

View Publication Preview PDF
Scopus (5)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Fri May 01 2020
Journal Name
Journal Of Physics: Conference Series
Bayesian Inference for Reliability Function of Gompertz Distribution
...Show More Authors
Abstract<p>In this paper, some Bayes estimators of the reliability function of Gompertz distribution have been derived based on generalized weighted loss function. In order to get a best understanding of the behaviour of Bayesian estimators, a non-informative prior as well as an informative prior represented by exponential distribution is considered. Monte-Carlo simulation have been employed to compare the performance of different estimates for the reliability function of Gompertz distribution based on Integrated mean squared errors. It was found that Bayes estimators with exponential prior information under the generalized weighted loss function were generally better than the estimators based o</p> ... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Palestine Journal Of Mathematics
STATISTICAL PROPERTIES OF GENERALIZED EXPONENTIAL RAYLEIGH DISTRIBUTION
...Show More Authors

This paper demonstrates the construction of a modern generalized Exponential Rayleigh distribution by merging two distributions with a single parameter. The "New generalized Exponential-Rayleigh distribution" specifies joining the Reliability function of exponential pdf with the Reliability function of Rayleigh pdf, and then adding a shape parameter for this distribution. Finally, the mathematical and statistical characteristics of such a distribution are accomplished

View Publication Preview PDF
Scopus (3)
Scopus
Publication Date
Fri Jan 01 2016
Journal Name
Statistics And Its Interface
Search for risk haplotype segments with GWAS data by use of finite mixture models
...Show More Authors

The region-based association analysis has been proposed to capture the collective behavior of sets of variants by testing the association of each set instead of individual variants with the disease. Such an analysis typically involves a list of unphased multiple-locus genotypes with potentially sparse frequencies in cases and controls. To tackle the problem of the sparse distribution, a two-stage approach was proposed in literature: In the first stage, haplotypes are computationally inferred from genotypes, followed by a haplotype coclassification. In the second stage, the association analysis is performed on the inferred haplotype groups. If a haplotype is unevenly distributed between the case and control samples, this haplotype is labeled

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Thu Mar 03 2022
Journal Name
Italian Journal Of Pure And Applied Mathematics
The inverse exponential Rayleigh distribution and related concept
...Show More Authors

Publication Date
Wed Sep 01 2010
Journal Name
Journal Of Economics And Administrative Sciences
Finding Mixture Weibull Distribution
...Show More Authors

In this paper a new idea was introduced which is finding a new distribution from other distributions using mixing parameters; wi  where  0 < wi < 1 ­and . Therefore we can get many mixture distributions with a number of parameters. In this paper I introduced the idea of a mixture Weibull distribution which is produced from mixing two Weibull distributions; the first with two parameters, the scale parameter , and the shape parameter,  and the second also has the scale parameter , and the shape parameter,  in addition to the location parameter, . These two distributions were mixed using a new parameter which is the mixing parameter w which represents the proportion

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Baghdad Science Journal
Bayesian and Non - Bayesian Inference for Shape Parameter and Reliability Function of Basic Gompertz Distribution
...Show More Authors

In this paper, some estimators of the unknown shape parameter and reliability function  of Basic Gompertz distribution (BGD) have been obtained, such as MLE, UMVUE, and MINMSE, in addition to estimating Bayesian estimators under Scale invariant squared error loss function assuming informative prior represented by Gamma distribution and non-informative prior by using Jefferys prior. Using Monte Carlo simulation method, these estimators of the shape parameter and R(t), have been compared based on mean squared errors and integrated mean squared, respectively

View Publication Preview PDF
Scopus (2)
Scopus Clarivate Crossref