The prediction process of time series for some time-related phenomena, in particular, the autoregressive integrated moving average(ARIMA) models is one of the important topics in the theory of time series analysis in the applied statistics. Perhaps its importance lies in the basic stages in analyzing of the structure or modeling and the conditions that must be provided in the stochastic process. This paper deals with two methods of predicting the first was a special case of autoregressive integrated moving average which is ARIMA (0,1,1) if the value of the parameter equal to zero, then it is called Random Walk model, the second was the exponential weighted moving average (EWMA). It was implemented in the data of the monthly traffic accidents in the province of Dhi Qar Governorate for the period from (Jan. 2011) to (Aug. 2019). It was found through the research that the model studied is well of the traffic accident, we can predict dangerous traffic accident using this model and reduce the aggravation through Develop plans strategic of the roads.
The two parameters of Exponential-Rayleigh distribution were estimated using the maximum likelihood estimation method (MLE) for progressively censoring data. To find estimated values for these two scale parameters using real data for COVID-19 which was taken from the Iraqi Ministry of Health and Environment, AL-Karkh General Hospital. Then the Chi-square test was utilized to determine if the sample (data) corresponded with the Exponential-Rayleigh distribution (ER). Employing the nonlinear membership function (s-function) to find fuzzy numbers for these parameters estimators. Then utilizing the ranking function transforms the fuzzy numbers into crisp numbers. Finally, using mean square error (MSE) to compare the outcomes of the survival
... Show MoreThe author obtain results on the asymptotic behavior of the nonoscillatory solutions of first order nonlinear neutral differential equations. Keywords. Neutral differential equations, Oscillatory and Nonoscillatory solutions.
Abstract
The analysis of Least Squares: LS is often unsuccessful in the case of outliers in the studied phenomena. OLS will lose their properties and then lose the property of Beast Linear Unbiased Estimator (BLUE), because of the Outliers have a bad effect on the phenomenon. To address this problem, new statistical methods have been developed so that they are not easily affected by outliers. These methods are characterized by robustness or (resistance). The Least Trimmed Squares: LTS method was therefore a good alternative to achieving more feasible results and optimization. However, it is possible to assume weights that take into consideration the location of the outliers in the data and det
... Show MoreOscillation criteria are obtained for all solutions of the first-order linear delay differential equations with positive and negative coefficients where we established some sufficient conditions so that every solution of (1.1) oscillate. This paper generalized the results in [11]. Some examples are considered to illustrate our main results.
The search is contain compared among some order selection criteria (FPE,AIC,SBC,H-Q) for the Model first order Autoregressive when the White Noise is follow Normal distribution and some of non Gaussian distributions (Log normal, Exponential and Poisson distribution ) by using Simulation
Although the majority of trends confirm the design aspects of the performance, functional and aesthetic design of the product. However, the attention was more focused on the nature of the plastic for those results, it is through the appearance of formal and guaranteed career such as designing Achieved adopt us the extent of the impact Relations Association between the elements and principles of design to achieve complementarity in the completed design of aesthetic and functional significance expressive and symbolic and in doing so has introduced a lot of new concepts for the arrangement and organization, coordination and functional classification of the unfinished design gave way to show diversity trends in the design of industrial produ
... Show MoreAbstract
The grey system model GM(1,1) is the model of the prediction of the time series and the basis of the grey theory. This research presents the methods for estimating parameters of the grey model GM(1,1) is the accumulative method (ACC), the exponential method (EXP), modified exponential method (Mod EXP) and the Particle Swarm Optimization method (PSO). These methods were compared based on the Mean square error (MSE) and the Mean Absolute percentage error (MAPE) as a basis comparator and the simulation method was adopted for the best of the four methods, The best method was obtained and then applied to real data. This data represents the consumption rate of two types of oils a he
... Show MoreIt is through a review of conversion of vegetable oils into glycidyl ethers focusing on their roles in achieving sustainability and improved epoxy resin performance. It involves functionalization of triglycerides in the form of epoxidation followed by glycidylation and yields bio-based monomers having improved mechanical as well as thermal properties. The review covers the underlying chemistry, production drivers, industrial applications, and future issues, supported by quantitative data and comparative studies. In addition, it integrates recent data on catalyst choice, feedstock flexibility, and environmental performance factors of bio-based resins, indicating their suitability for replacing traditional petroleum-based components.<
... Show MoreIn this paper, we will illustrate a gamma regression model assuming that the dependent variable (Y) is a gamma distribution and that it's mean ( ) is related through a linear predictor with link function which is identity link function g(μ) = μ. It also contains the shape parameter which is not constant and depends on the linear predictor and with link function which is the log link and we will estimate the parameters of gamma regression by using two estimation methods which are The Maximum Likelihood and the Bayesian and a comparison between these methods by using the standard comparison of average squares of error (MSE), where the two methods were applied to real da
... Show More