The public budget is on the same time an art and a science .As an accountable science it seeks balance between public income and public expenditure for an accountable year. And as an accountable art it seeks to achieve economic balance by distributing equitable income in order to reach sustainable development .This is the optimal use of all natural and human resources to address scarcity of natural resources facing the increase need of human resources by spending on education, health, environment, housing, agriculture and industry to achieve social justice for the current generation and future generations. Since the first budget in Iraq on 1921 an accounting budget, is balancing the sections and items has been adopted and since the public budget of 2004 public, expenditure has been increased and the deficit has become a chronic deficit on successive budgets without any achieving tangible results in terms of economic growth. Rather, the government is addressing the external debt deficit, which is putting a heavy burden on servicing the debt on the present generation and the next generation. To avoid long recession and prompt economic cycle, the government should move towards a zero budget in order to prepare a budget for programs and performance through the implementation of the five-year development plan for the years 2018-2022 and implementation of the government's program to reduce capital expenditure and seek to increase the investment budget to equalize the capital budget for the implemention of sustainability development and social justice in its three pillars namely economic development, social development and environmental protection and keep Iraq away from vicious circle of resolving the debt by the debt. (New oxford American Dictionary 2005).
The main idea of this research is to consider fibrewise pairwise versions of the more important separation axioms of ordinary bitopology named fibrewise pairwise - spaces, fibrewise pairwise - spaces, fibrewise pairwise - spaces, fibrewise pairwise -Hausdorff spaces, fibrewise pairwise functionally -Hausdorff spaces, fibrewise pairwise -regular spaces, fibrewise pairwise completely -regular spaces, fibrewise pairwise -normal spaces and fibrewise pairwise functionally -normal spaces. In addition we offer some results concerning it.
The research is an article that teaches some classes of fully stable Banach - Å modules. By using Unital algebra studies the properties and characterizations of all classes of fully stable Banach - Å modules. All the results are existing, and they've been listed to complete the requested information.
The primary objective of this paper is to introduce a new concept of fibrewise topological spaces on D is named fibrewise multi- topological spaces on D. Also, we entroduce the concepts of multi-proper, fibrewise multi-compact, fibrewise locally multi-compact spaces, Moreover, we study relationships between fibrewise multi-compact (resp., locally multi-compac) space and some fibrewise multi-separation axioms.
The aim of this research is to study some types of fibrewise fuzzy topological spaces. The six major goals are explored in this thesis. The very first goal, introduce and study the notions types of fibrewise topological spaces, namely fibrewise fuzzy j-topological spaces, Also, we introduce the concepts of fibrewise j-closed fuzzy topological spaces, fibrewise j-open fuzzy topological spaces, fibrewise locally sliceable fuzzy j-topological spaces and fibrewise locally sectionable fuzzy j-topological spaces. Furthermore, we state and prove several Theorems concerning these concepts, where j={δ,θ,α,p,s,b,β} The second goal is to introduce weak and strong forms of fibrewise fuzzy ω-topological spaces, namely the fibrewise fuz
... Show MoreIn this paper we introduced many new concepts all of these concepts completely
depended on the concept of feebly open set. The main concepts which introduced in
this paper are minimal f-open and maximal f-open sets. Also new types of
topological spaces introduced which called Tf min and Tf max spaces. Besides,
we present a package of maps called: minimal f-continuous, maximal f-continuous,
f-irresolute minimal, f-irresolute maximal, minimal f-irresolute and maximal firresolute.
Additionally we investigated some fundamental properties of the concepts
which presented in this paper.
Background: Schneiderian first rank symptoms are
considered highly valuable in the diagnosis of
schneideria.
They are more evident in the acute phase of the
disorder and fading gradually with time. Many studies
have shown that the rate of these symptoms are
variable in different countries and are colored by
cultural beliefs and values.
Objectives: To find out the rate of Schneiderian first
rank symptoms among newly diagnosed schizophrenic
patients, to assess which symptom(s) might
predominate in those patients, and to find out if there
is/are any correlation(s) between the occurrence of
these symptoms and the sex of the patients.
Methods: Out of twenty-four patients with no past
psychiatric hi
In this work we define and study new concept of fibrewise topological spaces, namely fibrewise soft topological spaces, Also, we introduce the concepts of fibrewise closed soft topological spaces, fibrewise open soft topological spaces, fibrewise soft near compact spaces and fibrewise locally soft near compact spaces.
In this publication, several six coordinate Co(III)-complexes are reported. The reaction of 2,3-butanedione monoxime with ethylenediamine or o-phenylenediamine in mole ratios of 2:1 gave the tetradentate imine-oxime ligands diaminoethane-N,N`-bis(2-butylidine-3-onedioxime) H2L1 and o-phenylenediamine-N,N`-bis(2-butylidine-3-onedioxime), respectively. The reaction of H2L1 and H2L2 with Co(NO3)2, and the amino acid co-ligands (glycine or serine) resulted in the formation of the required complexes. Upon complex formation, the ligands behave as a neutral tetradantate species, while the amino acid co-ligand acts as a monobasic species. The mode of bonding and overall geometry of the complexes were determined through physico-chemical and spectro
... Show MoreIn this paper, we introduced module that satisfying strongly -condition modules and strongly -type modules as generalizations of t-extending. A module is said strongly -condition if for every submodule of has a complement which is fully invariant direct summand. A module is said to be strongly -type modules if every t-closed submodule has a complement which is a fully invariant direct summand. Many characterizations for modules with strongly -condition for strongly -type module are given. Also many connections between these types of module and some related types of modules are investigated.