This study aims to find out the effectiveness of instructional scaffolding strategy in the development of academic achievement and critical thinking of female second grade secondary mathematics students. Semi-experimental and relational descriptive method was used. The sample of the study consisted of (50) students divided into an experimental group and a control group. The experimental group was taught using scaffolding strategy whereas the control group was taught using traditional method. Pre- and Post-tests were used to achieve the objective of the study. The results of the study revealed that there are statistically significant differences in the mean scores of the experimental and control groups in the posttest for both the academic achievement and critical thinking scale in favor of the experimental group. Furthermore, the findings have shown that there is a positive correlation between academic achievement and critical thinking. Based on the findings of the study, the researchers recommend curriculum designers and decision makers to integrate the scaffolding strategy in curricula and hold workshops for teachers to use scaffolding strategy in teaching mathematics.
The present work aims to study the effect of using an automatic thresholding technique to convert the features edges of the images to binary images in order to split the object from its background, where the features edges of the sampled images obtained from first-order edge detection operators (Roberts, Prewitt and Sobel) and second-order edge detection operators (Laplacian operators). The optimum automatic threshold are calculated using fast Otsu method. The study is applied on a personal image (Roben) and a satellite image to study the compatibility of this procedure with two different kinds of images. The obtained results are discussed.
Throughout this paper R represents a commutative ring with identity and all R-modules M are unitary left R-modules. In this work we introduce the notion of S-maximal submodules as a generalization of the class of maximal submodules, where a proper submodule N of an R-module M is called S-maximal, if whenever W is a semi essential submodule of M with N ? W ? M, implies that W = M. Various properties of an S-maximal submodule are considered, and we investigate some relationships between S-maximal submodules and some others related concepts such as almost maximal submodules and semimaximal submodules. Also, we study the behavior of S-maximal submodules in the class of multiplication modules. Farther more we give S-Jacobson radical of ri
... Show MoreThroughout this paper R represents commutative ring with identity and M is a unitary left R-module. The purpose of this paper is to investigate some new results (up to our knowledge) on the concept of weak essential submodules which introduced by Muna A. Ahmed, where a submodule N of an R-module M is called weak essential, if N ? P ? (0) for each nonzero semiprime submodule P of M. In this paper we rewrite this definition in another formula. Some new definitions are introduced and various properties of weak essential submodules are considered.
Throughout this paper R represents commutative ring with identity and M is a unitary left R-module. The purpose of this paper is to investigate some new results (up to our knowledge) on the concept of weak essential submodules which introduced by Muna A. Ahmed, where a submodule N of an R-module M is called weak essential, if N ? P ? (0) for each nonzero semiprime submodule P of M. In this paper we rewrite this definition in another formula. Some new definitions are introduced and various properties of weak essential submodules are considered.
Throughout this paper R represents a commutative ring with identity and all R-modules M are unitary left R-modules. In this work we introduce the notion of S-maximal submodules as a generalization of the class of maximal submodules, where a proper submodule N of an R-module M is called S-maximal, if whenever W is a semi essential submodule of M with N ⊊ W ⊆ M, implies that W = M. Various properties of an S-maximal submodule are considered, and we investigate some relationships between S-maximal submodules and some others related concepts such as almost maximal submodules and semimaximal submodules. Also, we study the behavior of S-maximal submodules in the class of multiplication modules. Farther more we give S-Jacobson radical of rings
... Show MoreAbstract Throughout this paper R represents commutative ring with identity and M is a unitary left R-module, the purpose of this paper is to study a new concept, (up to our knowledge), named St-closed submodules. It is stronger than the concept of closed submodules, where a submodule N of an R-module M is called St-closed (briefly N ≤Stc M) in M, if it has no proper semi-essential extensions in M, i.e if there exists a submodule K of M such that N is a semi-essential submodule of K then N = K. An ideal I of R is called St-closed if I is an St-closed R-submodule. Various properties of St-closed submodules are considered.
In this research, Haar wavelets method has been utilized to approximate a numerical solution for Linear state space systems. The solution technique is used Haar wavelet functions and Haar wavelet operational matrix with the operation to transform the state space system into a system of linear algebraic equations which can be resolved by MATLAB over an interval from 0 to . The exactness of the state variables can be enhanced by increasing the Haar wavelet resolution. The method has been applied for different examples and the simulation results have been illustrated in graphics and compared with the exact solution.
Mathematical integration techniques rely on mathematical relationships such as addition, subtraction, division, and subtraction to merge images with different resolutions to achieve the best effect of the merger. In this study, a simulation is adopted to correct the geometric and radiometric distortion of satellite images based on mathematical integration techniques, including Brovey Transform (BT), Color Normalization Transform (CNT), and Multiplicative Model (MM). Also, interpolation methods, namely the nearest neighborhood, Bi-linear, and Bi-cubic were adapted to the images captured by an optical camera. The evaluation of images resulting from the integration process was performed using several types of measures; the first type depend
... Show MoreTransformation and many other substitution methods have been used to solve non-linear differential fractional equations. In this present work, the homotopy perturbation method to solve the non-linear differential fractional equation with the help of He’s Polynomials is provided as the transformation plays an essential role in solving differential linear and non-linear equations. Here is the α-Sumudu technique to find the relevant results of the gas dynamics equation in fractional order. To calculate the non-linear fractional gas dynamical problem, a consumer method created on the new homotopy perturbation a-Sumudu transformation method (HP TM) is suggested. In the Caputo type, the derivative is evaluated. a-Sumudu homotopy pe
... Show MoreEnhanced Thematic Mapper Plus (ETM+) onboard the Landsat-7 remotely sensor satellite was launched on 15 April 1999. On May 31, 2003, image acquisition via the ETM+ was greatly impacted by the failure of the system’s Scan Line Corrector (SLC). Consequently, the ETM+ has lost approximately 22% of the data due to the increased scan gap. In this work, several gap-filling methods will be proposed to restore the ETM+ image malfunctions. Some of the proposed methods will be carried by estimating the missed pixel’s values from the same image pixel’s neighborhood, while others will utilize the pixel values extracted from different temporal scene acquired in different time. Mean average filter, median filter, midpoint filter, and several int
... Show More