Background: Chronic periodontitis is an inflammatory disease of tissues supporting the teeth. Salivary compositions have been most intensely studied as a potential marker for periodontal disease. In this study, analysis of saliva provides a simple and non-invasive method of evaluating the role of salivary IgA (s-IgA) levels in periodontal disease by detecting the level of (s-IgA) in patients with chronic periodontitis smokers and non smokers patients and correlate the mean (s-IgA) levels with clinical periodontal parameters Plaque index (PLI) gingival index (GI), probing pocket depth (PPD) and clinical attachment level (CAL). Materials and Methods: The study samples consists of (15) patients with chronic periodontitis who were non smokers (Group I) and (15) patients with chronic periodontitis who were smokers (Group II) of both gender with an age ranged (35-45) years were the periodontal parameters used in this study (PLI, GI, PPD and CAL), unstimulated salivary sample were collected from all subjects and the levels of salivary IgA (s-IgA) in each sample were analyzed for each group by using enzyme-linked immunosorbent assay (ELISA) technique. A statistical analysis was done by using excel 2013. Results: There was a significant difference with high mean level in the clinical periodontal parameters in smokers group compared to non smokers with chronic periodontitis (PLI, PPD and CAL) except GI which showed no significant difference between the same groups. The biochemical finding showed significant difference with low mean level for (s-IgA) in smokers group compared to non smokers. Conclusion: The findings in this study showed that the concentrations of salivary IgA might be used as an indicator for periodontal disease progression in smokers with chronic periodontitis as a resultant to the effect of smoking which lowering the concentration of the salivary IgA and subsequent reducing of the host’s defense lead to increase in the progression of periodontal disease.
Aspect categorisation and its utmost importance in the eld of Aspectbased Sentiment Analysis (ABSA) has encouraged researchers to improve topic model performance for modelling the aspects into categories. In general, a majority of its current methods implement parametric models requiring a pre-determined number of topics beforehand. However, this is not e ciently undertaken with unannotated text data as they lack any class label. Therefore, the current work presented a novel non-parametric model drawing a number of topics based on the semantic association present between opinion-targets (i.e., aspects) and their respective expressed sentiments. The model incorporated the Semantic Association Rules (SAR) into the Hierarchical Dirichlet Proce
... Show MoreThere has been a growing interest in the use of chaotic techniques for enabling secure communication in recent years. This need has been motivated by the emergence of a number of wireless services which require the channel to provide very low bit error rates (BER) along with information security. This paper investigates the feasibility of using chaotic communications over Multiple-Input Multiple-Output (MIMO) channels by combining chaos modulation with a suitable Space Time Block Code (STBC). It is well known that the use of Chaotic Modulation techniques can enhance communication security. However, the performance of systems using Chaos modulation has been observed to be inferior in BER performance as compared to conventional communication
... Show MoreThis paper describes a newly modified wind turbine ventilator that can achieve highly efficient ventilation. The new modification on the conventional wind turbine ventilator system may be achieved by adding a Savonius wind turbine above the conventional turbine to make it work more efficiently and help spinning faster. Three models of the Savonius wind turbine with 2, 3, and 4 blades' semicircular arcs are proposed to be placed above the conventional turbine of wind ventilator to build a hybrid ventilation turbine. A prototype of room model has been constructed and the hybrid turbine is placed on the head of the room roof. Performance's tests for the hybrid turbine with a different number of blades and different values o
... Show MoreAbstract
The present paper attempts to detect the level of (COVID-19) pandemic panic attacks among university students, according to gender and stage variables.
To achieve this objective, the present paper adopts the scale set up by (Fathallah et al., 2021), which has been applied electronically to a previous cross-cultural sample consisting of (2285) participants from Arab countries, including Iraq. The scale includes, in its final form, (69) optional items distributed on (6) dimensions: physical symptoms (13) items, psychological and emotional symptoms (12) items, cognitive and mental symptoms (11) items, social symptoms (8) items, general symptoms (13) items and daily living practices (12) items
... Show MoreThe choice of binary Pseudonoise (PN) sequences with specific properties, having long period high complexity, randomness, minimum cross and auto- correlation which are essential for some communication systems. In this research a nonlinear PN generator is introduced . It consists of a combination of basic components like Linear Feedback Shift Register (LFSR), ?-element which is a type of RxR crossbar switches. The period and complexity of a sequence which are generated by the proposed generator are computed and the randomness properties of these sequences are measured by well-known randomness tests.
Pure and doped TiO 2 with Bi films are obtained by pulse laser deposition technique at RT under vacume 10-3 mbar, and the influence of Bi content on the photocvoltaic properties of TiO 2 hetrojunctions is studied. All the films display photovoltaic in the near visible region. A broad double peaks are observed around λ= 300nm for pure TiO 2 at RT in the spectral response of the photocurrent, which corresponds approximately to the absorption edge and this peak shift to higher wavelength (600 nm) when Bi content increase by 7% then decrease by 9%. The result is confirmed with the decreasing of the energy gap in optical properties. Also, the increasing is due to an increase in the amount of Bi content, and shifted to 400nm when annealed at 523
... Show MoreThis paper interest to estimation the unknown parameters for generalized Rayleigh distribution model based on censored samples of singly type one . In this paper the probability density function for generalized Rayleigh is defined with its properties . The maximum likelihood estimator method is used to derive the point estimation for all unknown parameters based on iterative method , as Newton – Raphson method , then derive confidence interval estimation which based on Fisher information matrix . Finally , testing whether the current model ( GRD ) fits to a set of real data , then compute the survival function and hazard function for this real data.
In this research, we use fuzzy nonparametric methods based on some smoothing techniques, were applied to real data on the Iraqi stock market especially the data about Baghdad company for soft drinks for the year (2016) for the period (1/1/2016-31/12/2016) .A sample of (148) observations was obtained in order to construct a model of the relationship between the stock prices (Low, high, modal) and the traded value by comparing the results of the criterion (G.O.F.) for three techniques , we note that the lowest value for this criterion was for the K-Nearest Neighbor at Gaussian function .
Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye
... Show MoreLet A be a unital algebra, a Banach algebra module M is strongly fully stable Banach A-module relative to ideal K of A, if for every submodule N of M and for each multiplier θ : N → M such that θ(N) ⊆ N ∩ KM. In this paper, we adopt the concept of strongly fully stable Banach Algebra modules relative to an ideal which generalizes that of fully stable Banach Algebra modules and we study the properties and characterizations of strongly fully stable Banach A-module relative to ideal K of A.