Preferred Language
Articles
/
HBjjKZgBVTCNdQwC8bqb
SAR-HDP: Non-parametric Topic Model for Aspect categorisation based on online reviews
...Show More Authors

Aspect categorisation and its utmost importance in the eld of Aspectbased Sentiment Analysis (ABSA) has encouraged researchers to improve topic model performance for modelling the aspects into categories. In general, a majority of its current methods implement parametric models requiring a pre-determined number of topics beforehand. However, this is not e ciently undertaken with unannotated text data as they lack any class label. Therefore, the current work presented a novel non-parametric model drawing a number of topics based on the semantic association present between opinion-targets (i.e., aspects) and their respective expressed sentiments. The model incorporated the Semantic Association Rules (SAR) into the Hierarchical Dirichlet Process (HDP), named (SAR-HDP). The phrase-based (or aspect-based) Bayesian model (SAR-HDP) did not consider the words sentence being drawn from a single topic due to the presence of multiple aspects in a single review, which belonged to a multiple-aspect topic (i.e., category). Beyond its consideration of the semantic information for aspect identi cation, the proposed model further upheld the semantic information discerned between the drawn topics and aspects identi ed to maintain topic consistency. Empirical investigation showed that the approach positioned successfully outperformed standard parametric models and nonparametric models in terms of aspect categorisation when subjected to restaurant and hotel reviews sourced from Amazon and TripAdvisor.

View Publication
Publication Date
Fri Jan 01 2021
Journal Name
International Journal Of Agricultural And Statistical Sciences
ESTIMATED NON-PARAMETRIC AND SEMI-PARAMETRIC MODEL FOR LONGITUDINAL DATA
...Show More Authors

View Publication
Scopus
Publication Date
Tue Dec 17 2019
Journal Name
Lecture Notes In Electrical Engineering
Aspect Categorization Using Domain-Trained Word Embedding and Topic Modelling
...Show More Authors

Aspect-based sentiment analysis is the most important research topic conducted to extract and categorize aspect-terms from online reviews. Recent efforts have shown that topic modelling is vigorously used for this task. In this paper, we integrated word embedding into collapsed Gibbs sampling in Latent Dirichlet Allocation (LDA). Specifically, the conditional distribution in the topic model is improved using the word embedding model that was trained against (customer review) training dataset. Semantic similarity (cosine measure) was leveraged to distribute the aspect-terms to their related aspect-category cognitively. The experiment was conducted to extract and categorize the aspect terms from SemEval 2014 dataset.

View Publication Preview PDF
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Mon Jul 21 2025
Journal Name
Misan Journal Of Academic Studies
Some of Parametric and Non Parametric Estimations for Circular Regression Model via Simulation
...Show More Authors

Circular data (circular sightings) are periodic data and are measured on the unit's circle by radian or grades. They are fundamentally different from those linear data compatible with the mathematical representation of the usual linear regression model due to their cyclical nature. Circular data originate in a wide variety of fields of scientific, medical, economic and social life. One of the most important statistical methods that represents this data, and there are several methods of estimating angular regression, including teachers and non-educationalists, so the letter included the use of three models of angular regression, two of which are teaching models and one of which is a model of educators. ) (DM) (MLE) and circular shrinkage mod

... Show More
View Publication Preview PDF
Publication Date
Mon Apr 25 2022
Journal Name
Knowledge And Information Systems
Unsupervised model for aspect categorization and implicit aspect extraction
...Show More Authors

People’s ability to quickly convey their thoughts, or opinions, on various services or items has improved as Web 2.0 has evolved. This is to look at the public perceptions expressed in the reviews. Aspect-based sentiment analysis (ABSA) deemed to receive a set of texts (e.g., product reviews or online reviews) and identify the opinion-target (aspect) within each review. Contemporary aspect-based sentiment analysis systems, like the aspect categorization, rely predominantly on lexicon-based, or manually labelled seeds that is being incorporated into the topic models. And using either handcrafted rules or pre-labelled clues for performing implicit aspect detection. These constraints are restricted to a particular domain or language which is

... Show More
View Publication
Scopus (8)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Journal Of Physics: Conference Series
Improve topic modeling algorithms based on Twitter hashtags
...Show More Authors
Abstract<p>Today with increase using social media, a lot of researchers have interested in topic extraction from Twitter. Twitter is an unstructured short text and messy that it is critical to find topics from tweets. While topic modeling algorithms such as Latent Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA) are originally designed to derive topics from large documents such as articles, and books. They are often less efficient when applied to short text content like Twitter. Luckily, Twitter has many features that represent the interaction between users. Tweets have rich user-generated hashtags as keywords. In this paper, we exploit the hashtags feature to improve topics learned</p> ... Show More
View Publication
Scopus (19)
Crossref (17)
Scopus Crossref
Publication Date
Sun Jun 20 2021
Journal Name
Baghdad Science Journal
A Word Cloud Model based on Hate Speech in an Online Social Media Environment
...Show More Authors

Social media is known as detectors platform that are used to measure the activities of the users in the real world. However, the huge and unfiltered feed of messages posted on social media trigger social warnings, particularly when these messages contain hate speech towards specific individual or community. The negative effect of these messages on individuals or the society at large is of great concern to governments and non-governmental organizations. Word clouds provide a simple and efficient means of visually transferring the most common words from text documents. This research aims to develop a word cloud model based on hateful words on online social media environment such as Google News. Several steps are involved including data acq

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Thu Jun 30 2022
Journal Name
Journal Of Economics And Administrative Sciences
Comparing Some of Robust the Non-Parametric Methods for Semi-Parametric Regression Models Estimation
...Show More Authors

In this research, some robust non-parametric methods were used to estimate the semi-parametric regression model, and then  these methods were compared using the MSE comparison criterion, different sample sizes, levels of variance, pollution rates, and three different models were used. These methods are S-LLS S-Estimation -local smoothing, (M-LLS)M- Estimation -local smoothing, (S-NW) S-Estimation-NadaryaWatson Smoothing, and (M-NW) M-Estimation-Nadarya-Watson Smoothing.

The results in the first model proved that the (S-LLS) method was the best in the case of large sample sizes, and small sample sizes showed that the

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Jun 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Proposed method to estimate missing values in Non - Parametric multiple regression model
...Show More Authors

In this paper, we will provide a proposed method to estimate missing values for the Explanatory variables for Non-Parametric Multiple Regression Model and compare it with the Imputation Arithmetic mean Method, The basis of the idea of this method was based on how to employ the causal relationship between the variables in finding an efficient estimate of the missing value, we rely on the use of the Kernel estimate by Nadaraya – Watson Estimator , and on Least Squared Cross Validation (LSCV) to estimate the Bandwidth, and we use the simulation study to compare between the two methods.

 

View Publication Preview PDF
Crossref
Publication Date
Sat Aug 01 2015
Journal Name
International Journal Of Computer Science And Mobile Computing
Image Compression based on Non-Linear Polynomial Prediction Model
...Show More Authors

Publication Date
Wed Oct 17 2018
Journal Name
Journal Of Economics And Administrative Sciences
The Use Of Some Parametric And Non parametric Methods For Analysis Of Factorial Experiments With Application
...Show More Authors

summary

In this search, we examined the factorial experiments and the study of the significance of the main effects, the interaction of the factors and their simple effects by the F test (ANOVA) for analyze the data of the factorial experience. It is also known that the analysis of variance requires several assumptions to achieve them, Therefore, in case of violation of one of these conditions we conduct a transform to the data in order to match or achieve the conditions of analysis of variance, but it was noted that these transfers do not produce accurate results, so we resort to tests or non-parametric methods that work as a solution or alternative to the parametric tests , these method

... Show More
View Publication Preview PDF
Crossref