Preferred Language
Articles
/
iRe5Po8BVTCNdQwCz2Wy
Lossy Image Compression Using Hybrid Deep Learning Autoencoder Based On kmean Clusteri

Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eyes' observation of the different colors and features of images. We propose a multi-layer hybrid system for deep learning using the unsupervised CAE architecture and using the color clustering of the K-mean algorithm to compress images and determine their size and color intensity. The system is implemented using Kodak and Challenge on Learned Image Compression (CLIC) dataset for deep learning. Experimental results show that our proposed method is superior to the traditional compression methods of the autoencoder, and the proposed work has better performance in terms of performance speed and quality measures Peak Signal To Noise Ratio (PSNR) and Structural Similarity Index (SSIM) where the results achieved better performance and high efficiency With high compression bit rates and low Mean Squared Error (MSE) rate the results recorded the highest compression ratios that ranged between (0.7117 to 0.8707) for the Kodak dataset and (0.7191 to 0.9930) for CLIC dataset. The system achieved high accuracy and quality in comparison to the error coefficient, which was recorded (0.0126 to reach 0.0003) below, and this system is onsidered the most quality and accurate compared to the methods of deep learning compared to the deep learning methods of the autoencoder

Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Science
Image Compression Using Deep Learning: Methods and Techniques

     In recent years images have been used widely by online social networks providers or numerous organizations such as governments, police departments, colleges, universities, and private companies. It held in vast databases. Thus, efficient storage of such images is advantageous and its compression is an appealing application. Image compression generally represents the significant image information compactly with a smaller size of bytes while insignificant image information (redundancy) already been removed for this reason image compression has an important role in data transfer and storage especially due to the data explosion that is increasing significantly. It is a challenging task since there are highly complex unknown correlat

... Show More
Scopus (12)
Crossref (5)
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Mar 20 2023
Journal Name
2023 International Conference On Information Technology, Applied Mathematics And Statistics (icitams)
Scopus Crossref
View Publication
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Oil spill classification based on satellite image using deep learning techniques

 An oil spill is a leakage of pipelines, vessels, oil rigs, or tankers that leads to the release of petroleum products into the marine environment or on land that happened naturally or due to human action, which resulted in severe damages and financial loss. Satellite imagery is one of the powerful tools currently utilized for capturing and getting vital information from the Earth's surface. But the complexity and the vast amount of data make it challenging and time-consuming for humans to process. However, with the advancement of deep learning techniques, the processes are now computerized for finding vital information using real-time satellite images. This paper applied three deep-learning algorithms for satellite image classification

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Oct 30 2022
Journal Name
Iraqi Journal Of Science
Image Signal Decomposition Using Polynomial Representation with Hybrid Lossy and Non-Lossy Coding Scheme

This article presents a polynomial-based image compression scheme, which consists of using the color model (YUV) to represent color contents and using two-dimensional polynomial coding (first-order) with variable block size according to correlation between neighbor pixels. The residual part of the polynomial for all bands is analyzed into two parts, most important (big) part, and least important (small) parts. Due to the significant subjective importance of the big group; lossless compression (based on Run-Length spatial coding) is used to represent it. Furthermore, a lossy compression system scheme is utilized to approximately represent the small group; it is based on an error-limited adaptive coding system and using the transform codin

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon Jun 01 2015
Journal Name
. International Journal Of Computer Science And Mobile Computing
Publication Date
Fri Apr 01 2016
Journal Name
Iosr Journal Of Computer Engineering
Crossref (1)
Crossref
View Publication
Publication Date
Fri Apr 01 2016
Journal Name
Iosr Journal Of Computer Engineering
Crossref (1)
Crossref
Publication Date
Thu Jun 01 2017
Journal Name
Iosr Journal Of Computer Engineering
Crossref
View Publication
Publication Date
Sat Jan 30 2021
Journal Name
Iraqi Journal Of Science
Image Compression Based on Arithmetic Coding Algorithm

The past years have seen a rapid development in the area of image compression techniques, mainly due to the need of fast and efficient techniques for storage and transmission of data among individuals. Compression is the process of representing the data in a compact form rather than in its original or incompact form. In this paper, integer implementation of Arithmetic Coding (AC) and Discreet Cosine Transform (DCT) were applied to colored images. The DCT was applied using the YCbCr color model. The transformed image was then quantized with the standard quantization tables for luminance and chrominance. The quantized coefficients were scanned by zigzag scan and the output was encoded using AC. The results showed a decent compression ratio

... Show More
Scopus (9)
Crossref (5)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Jul 25 2021
Journal Name
Journal Of Al-qadisiyah For Computer Science And Mathematics
A Survey paper on Lossy Audio Compression Methods

During the two last decades ago, audio compression becomes the topic of many types of research due to the importance of this field which reflecting on the storage capacity and the transmission requirement. The rapid development of the computer industry increases the demand for audio data with high quality and accordingly, there is great importance for the development of audio compression technologies, lossy and lossless are the two categories of compression. This paper aims to review the techniques of the lossy audio compression methods, summarize the importance and the uses of each method.

Crossref
View Publication Preview PDF