Background: This study was conducted to evaluate the hard palate bone density and thickness during 3rd and 4th decades and their relationships with body mass index (BMI) and compositions, to allow more accurate mini-implant placement. Materials and method: Computed tomographic (CT) images were obtained for 60 patients (30 males and 30 females) with age range 20-39 years. The hard palate bone density and thickness were measured at 20 sites at the intersection of five anterioposterior and four mediolateral reference lines with 6 and 3 mm intervals from incisive foramen and mid-palatal suture respectively. Diagnostic scale operates according to the bioelectric impedance analysis principle was used to measure body weight; percentages of body fat, water, and muscle; bone mass; and basal and active metabolic rates. Results: No significant difference in overall bone density and thickness of hard palate during 3rd and 4th decades. The gender should be considered in regard to bone thickness. Cortical bone density and thickness showed a tendency to decrease posteriorly, while the cancellous bone density showed a tendency to increase posteriorly. In the mediolateral areas, no specific patterns were observed. With increasing BMI, the cortical bone density was increased. The relationships of bone density and thickness with most scale measurements were not significant. Conclusion: Mini-implants for orthodontic anchorage can be effectively placed in most areas of hard palate regarding the bone density. While regarding bone thickness, care should be taken during the planning of their placement in hard palate. A new classification for bone thickness of hard palate has been developed.
In order to scrutinize the impact of the decoration of Sc upon the sensing performance of an XN nanotube (X = Al or Ga, and XNNT) in detecting sarin (SN), the density functionals M06-2X, τ-HCTHhyb, and B3LYP were utilized. The interaction of the pristine XNNT with SN was a physical adsorption with the sensing response (SR) of approximately 5.4. Decoration of the Sc metal into the surface of the AlN and GaN led to an increase in the adsorption energy of SN from −3.4 to −18.9, and −3.8 to −20.1 kcal/mol, respectively. Also, there was a significant increase in the corresponding SR to 38.0 and 100.5, the sensitivity of metal decorated XNNT (metal@XNNT) is increased. So, we found that Sc-decorating more increases the sensitivity of GaNN
... Show MoreThis study was carried out in order to determine the toxic, mutagenic and antimutagenic effects for Mallow (Malva parviflora) in comparison to its mutagenic effect of Ultraviolet (UV) because it is consider physical mutagen by using parameters for the extract pri , with , post UV exposure by using bacterial system (G-system). The used system consisted of three isolates G3 Bacillus spp., G12 Arthrobacter spp. and G27 Brevibacterium spp.. The study depended on recording survival fraction (Sx) for studying the effects and induction of Streptomycin and Refampicin resistance mutants as a genetic markers.Water Extract was prepared from fresh and dry mallow leaves, stems, flowers and roots, in optimum concentration equal to (125µg/ml) which is
... Show MoreIdentifying phenolic compounds in some genera belonging in the Amaranthaceae family by HPLC technique
In this work, metal oxides nanostructures, mainly, copper oxide (CuO), nickel oxide (NiO), titanium dioxide (TiO2), and multilayer structure were synthesized by dc reactive magnetron sputtering technique. The structural purity and nanoparticle size of the prepared nanostructures were determined. The individual metal oxide samples (CuO, NiO and TiO2) showed high structural purity and minimum particle sizes of 34, 44, 61 nm, respectively. As well, the multilayer structure showed high structural purity as no elements or compounds other than the three oxides were founds in the final sample while the minimum particle size was 18 nm. This reduction in nanoparticle size can be considered as an advantage for the dc reactive magnetron sputtering tec
... Show MoreZinc sulfide (ZnS) thin films were deposited on glass substrates using pulsed laser deposition technique. The laser used is the Q-switched Nd: YAG laser with 1064nm wavelength and 1Hz pulse repetition rate and varying laser energy 700mJ-1000mJ with 25 pulse. The substrate temperature was kept constant at 100°C. The structural, morphological and optical properties of ZnS thin films were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscope (AFM) and UV-VIS spectrophotometer.
This research has come out with that, function-based responsibility accounting system has harmful side – effects preventing it of achieving its controlling objective, that is, goal congruence, which are due to its un integrated measures, its focus on measuring measurable behaviors while neglecting behaviors that are hardly measured, and its dependence on standard operating procedures.
In addition, the system hypotheses and measures are designed to fit previous business environment, not the current environment.
The research has also concluded that the suggestive model, that is, activity-based responsibility accounting is designed to get ride of harmful side – effects of functi
... Show MoreA low-cost reverse flow plasma system powered by argon gas pumping was built using homemade materials in this paper. The length of the resulting arc change was directly proportional to the flow rate, while using the thermal camera to examine the thermal intensity distribution and demonstrating that it is concentrated in the centre, away from the walls at various flow rates, the resulting arc's spectra were also measured. The results show that as the gas flow rate increased, so did the ambient temperature. The results show that the medium containing the arc has a maximum temperature of 34.1 ˚C at a flow rate of 14 L/min and a minimum temperature of 22.6 ˚C at a flow rate of 6 L/min.
Green synthesis methods have emerged as favorable techniques for the synthesis of nano-oxides due to their simplicity, cost-effectiveness, eco-friendliness, and non-toxicity. In this study, Nickel oxide nanoparticles (NiO-NPs) were synthesized using the aqueous extract of Laurus nobilis leaves as a natural capping agent. The synthesized NiO-NPs were employed as an adsorbent for the removal of Biebrich Scarlet (BS) dye from aqueous solution using adsorption technique. Comprehensive characterization of NiO-NPs was performed using various techniques such as atomic force microscopy (AFM), Fourier transform infrared (FTIR), X-ray diffraction (XRD), Brunauer-Emmett and Teller (BET) analysis, and scanning electron microscopy (SEM). Additionally, o
... Show MoreTwo- dimensional numerical simulations are carried out to study the elements of observing a Dirac point source and a Dirac binary system. The essential features of this simulation are demonstrated in terms of the point spread function and the modulation transfer function. Two mathematical equations have been extracted to present, firstly the relationship between the radius of optical telescope and the distance between the central frequency and cut-off frequency of the optical telescope, secondly the relationship between the radius of the optical telescope and the average frequency components of the modulation transfer function.
The gas sensing properties of Co3O4 and Co3O4:Y nano structures were investigated. The films were synthesized using the hydrothermal method on a seeded layer. The XRD, SEM analysis and gas sensing properties were investigated for Co3O4 and Co3O4:Y thin films. XRD analysis shows that all films are polycrystalline in nature, having a cubic structure, and the crystallite size is (11.7)nm for cobalt oxide and (9.3)nm for the Co3O4:10%Y. The SEM analysis of thin films obviously indicates that Co3O4 possesses a nanosphere-like structure and a flower-like structure for Co3O4:Y.
The sen
... Show More