Preferred Language
Articles
/
SRbkFIcBVTCNdQwChTWj
Highly-Pure Nanostructured Metal Oxide Multilayer Structure Prepared by DC Reactive Magnetron Sputtering Technique
...Show More Authors

In this work, metal oxides nanostructures, mainly, copper oxide (CuO), nickel oxide (NiO), titanium dioxide (TiO2), and multilayer structure were synthesized by dc reactive magnetron sputtering technique. The structural purity and nanoparticle size of the prepared nanostructures were determined. The individual metal oxide samples (CuO, NiO and TiO2) showed high structural purity and minimum particle sizes of 34, 44, 61 nm, respectively. As well, the multilayer structure showed high structural purity as no elements or compounds other than the three oxides were founds in the final sample while the minimum particle size was 18 nm. This reduction in nanoparticle size can be considered as an advantage for the dc reactive magnetron sputtering technique when metal oxide multilayer structures are prepared.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Dec 02 2020
Journal Name
Iraqi Journal Of Applied Physics
Characterization of Multilayer Highly-Pure Metal Oxide Structures Prepared by DC Reactive Magnetron Sputtering Technique
...Show More Authors

In this work, multilayer nanostructures were prepared from two metal oxide thin films by dc reactive magnetron sputtering technique. These metal oxide were nickel oxide (NiO) and titanium dioxide (TiO2). The prepared nanostructures showed high structural purity as confirmed by the spectroscopic and structural characterization tests, mainly FTIR, XRD and EDX. This feature may be attributed to the fine control of operation parameters of dc reactive magnetron sputtering system as well as the preparation conditions using the same system. The nanostructures prepared in this work can be successfully used for the fabrication of nanodevices for photonics and optoelectronics requiring highly-pure nanomaterials.

View Publication Preview PDF
Publication Date
Tue Dec 13 2022
Journal Name
Emergent Materials
Spectroscopic characteristics of highly pure metal oxide nanostructures prepared by DC reactive magnetron sputtering technique
...Show More Authors

In this work, metal oxide nanostructures, mainly copper oxide (CuO), nickel oxide (NiO), titanium dioxide (TiO2), and multilayer structure, were synthesized by the DC reactive magnetron sputtering technique. The effect of deposition time on the spectroscopic characteristics, as well as on the nanoparticle size, was determined. A long deposition time allows more metal atoms sputtered from the target to bond to oxygen atoms and form CuO, NiO, or TiO2 molecules deposited as thin films on glass substrates. The structural characteristics of the final samples showed high structural purity as no other compounds than CuO, NiO, and TiO2 were found in the final samples. Also, the prepared multilayer structures did not show new compounds other than th

... Show More
View Publication
Scopus (23)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Wed Sep 02 2020
Journal Name
Iraqi Journal Of Applied Physics
Heterojunction Solar Cell Based on Highly-Pure Nanopowders Prepared by DC Reactive Magnetron Sputtering
...Show More Authors

In this work, a novel design for the NiO/TiO2 heterojunction solar cells is presented. Highly-pure nanopowders prepared by dc reactive magnetron sputtering technique were used to form the heterojunctions. The electrical characteristics of the proposed design were compared to those of a conventional thin film heterojunction design prepared by the same technique. A higher efficiency of 300% was achieved by the proposed design. This attempt can be considered as the first to fabricate solar cells from highly-pure nanopowders of two different semiconductors.

View Publication Preview PDF
Publication Date
Thu Oct 01 2020
Journal Name
Iraqi Journal Of Applied Physics
Spectral and Electrical Characteristics of Nanostructured NiO/TiO 2 Heterojunction Fabricated by DC Reactive Magnetron Sputtering
...Show More Authors

In this work, p-n junctions were fabricated from highly-pure nanostructured NiO and TiO2 thin films deposited on glass substrates by dc reactive magnetron sputtering technique. The structural characterization showed that the prepared multilayer NiO/TiO2 thin film structures were highly pure as no traces for other compounds than NiO and TiO2 were observed. It was found that the absorption of NiO-on-TiO2 structure is higher than that of the TiO2-on-NiO. Also, the NiO/TiO2 heterojunctions exhibit typical electrical characteristics, higher ideality factor and better spectral responsivity when compared to those fabricated from the same materials by the same technique and with larger particle size and lower structural purity.

View Publication Preview PDF
Publication Date
Mon Jun 01 2020
Journal Name
Iraqi Journal Of Physics
Effect depositions parameters on the characteristics of Ni0.5Co0.5Fe2O4 nanocomposite films prepared by DC reactive magnetron Co-Sputtering technique
...Show More Authors

In this work, spinel ferrites (NiCoFe2O4) were prepared as thin films by dc reactive dual-magnetron co-sputtering technique. Effects of some operation parameters, such as inter-electrode distance, and preparation conditions such as mixing ratio of argon and oxygen in the gas mixture, on the structural and spectroscopic characteristics of the prepared samples were studied. For samples prepared at inter-electrode distance of 5 cm, only one functional group of OH- was observed in the FTIR spectra as all bands belonging to the metal-oxygen vibration were observed. Similarly, the XRD results showed that decreasing the pressure of oxygen in the gas mixture lead to grow more crystal planes in the samples prepare

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Mon Dec 01 2014
Journal Name
Photonic Sensors
Crystalline Structure and Surface Morphology of Tin Oxide Films Grown by DC Reactive Sputtering
...Show More Authors

Abstract: Tin oxide thin films were deposited by direct current (DC) reactive sputtering at gas pressures of 0.015 mbar – 0.15 mbar. The crystalline structure and surface morphology of the prepared SnO2 films were introduced by X-ray diffraction (XRD) and atomic force microscopy (AFM). These films showed preferred orientation in the (110) plane. Due to AFM micrographs, the grain size increased non-uniformly as the working gas pressure increased.

Preview PDF
Publication Date
Tue Jan 01 2019
Journal Name
Optical And Quantum Electronics
Photocatalytic activity of anatase titanium dioxide nanostructures prepared by reactive magnetron sputtering technique
...Show More Authors

View Publication
Scopus (59)
Scopus
Publication Date
Tue Mar 17 2020
Journal Name
Optical And Quantum Electronics
Photocatalytic activity of Ag-doped TiO2 nanostructures synthesized by DC reactive magnetron co-sputtering technique
...Show More Authors

View Publication
Scopus (23)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Thu Apr 18 2019
Journal Name
Iraqi Journal Of Science
Optimization of Rutile/Anatase Ratio in Titanium Dioxide Nanostructures prepared by DC Magnetron Sputtering Technique
...Show More Authors

Mixed phase rutile/anatase of TiO2 was prepared and studied by a closed field DC magnetron sputtering configuration (CFDCMS). It was found that the contents of rutile increased from the ratio of 38% to 53% as the deposition time increased from 3.5 hours to 4.5 hours.
The photocatalytic activity of the mixed phase rutile/anatase TiO2 was measured by monitoring the degradation of the blue methylene dye in an aqueous solution, under exposure to UV-radiation, using UV-vis absorption spectroscopy. It was proven that the photocatalytic activity in the mixed phase (TiO2) is a function of rutile content reaching a maximum value at 53% rutile. Thus, the effect of synergy between anatase- TiO2 and rutile- TiO2 was observed. It was observed that

... Show More
View Publication Preview PDF
Publication Date
Mon Aug 04 2014
Journal Name
Photonic Sensors
Crystalline structure and surface morphology of tin oxide films grown by DC reactive sputtering
...Show More Authors

View Publication
Scopus (8)
Crossref (5)
Scopus Crossref