Background: Poly (methyl methacrylate) has been widely utilized for fabrication of dentures for many years as it has good advantages but not achieved all demands of the mechanical properties such as low transverse strength, low impact strength, low surface hardness, high water solubility and high water sorption. Material and method: To provide bonding between ZrO2 nanoparticles and PMMA matrix, the ZrO2 Nano-fillers were surface-treated with a saline coupling agent. Plasma surface treatment of polyethylene (PE) fiber was done to change surface fiber by using DC- glow discharge system. For characterization of interring any functional groups, the (FTIR) spectrum were done .then the mechanical properties studied to choose the appropriate percentages to complete study. Results: The results revealed that highly significant difference between groups in transverse strength, the highest mean value (96.1700 N/mm2) found in 2.0% polyethylene fibers and 1.5% salinized Zirconium oxide nanoparticles group, highly significant increase in impact strength (7.69 Kj/m2), surface hardness (92.35) and highly significant decrease in water sorption (0.0016 mg/cm2) and water solubility (0.0013 mg/cm2). Conclusion: the use of saline coupling agent with ZrO2 and oxygen plasma treatment PE fiber provided an effective procedure for getting good bonding with the PMMA matrix to give enhanced properties for the composite.
A particulate polymer composite material was prepared by reinforcing with the Aluminum Oxide (Al2O3) or Aluminum (Al) metallic particles with a particle size of (30) µm to an unsaturated Polyester Resin with a weight fraction of (5%, 10%, 15%, 20%).
Tensile test results showed the maximum value of elastic modulus reached (2400MPa.) in the case of reinforcing with (Al) particles with weight fraction (20%) and (1500 MPa.) in the case of reinforcing with (Al2O3) particles of the same weight fraction.
When the impact and the flexural strength tests were done, the results showed that flexural strength (F.S), maximum shear stress (τmax), impact strength
... Show MoreIn this study, silica-graphene oxide nano–composites were prepared by sol-gel technique and deposited by spray pyrolysis method on glass substrate. The effect of changing the graphene/silica ratio on the optical properties and wetting of these nano–structures has been investigated. The structural and morphological properties of the thin films have been studied by x-ray diffraction spectroscopy (XRD), field emission scanning electron microscope (FESEM), energy dispersive x-ray spectroscopy (EDS) and atomic force microscope (AFM). XRD results show that silica structures present in the synthesized films exhibit amorphous character and there is a poor arrangement in graphene plates al
In this work, novel copolymers of poly(adipic anhydride-co-mannitol) were synthesized by melting condensation polymerization of poly(adipic anhydride) with five percentages of mannitol sugar, 1 to 5 Wt.%. These copolymers were purified and then, characterized by FT-IR, which was proved that the cross-linking reaction was caused by nucleophilic attack of mannitol hydroxyl group to acidic anhydride groups of poly(adipic anhydride) backbone and new ester groups were formed and appeared. Also, modified organic-soluble chitosan, N-maleoyl-chitosan, were synthesized by grafting reaction of chitosan with maleic anhydride in DMF as solvent, and it was also purified and characterized by FT-IR. Biodegradation in vitro of the IPNs of poly(adipic anhyd
... Show MoreIn present work examined the oxidation desulfurization in batch system for model fuels with 2250 ppm sulfur content using air as the oxidant and ZnO/AC composite prepared by thermal co-precipitation method. Different factors were studied such as composite loading 1, 1.5 and 2.5 g, temperature 25 oC, 30 oC and 40 oC and reaction time 30, 45 and 60 minutes. The optimum condition is obtained by using Tauguchi experiential design for oxidation desulfurization of model fuel. the highest percent sulfur removal is about 33 at optimum conditions. The kinetic and effect of internal mass transfer were studied for oxidation desulfurization of model fuel, also an empirical kinetic model was calculated for model fuels
... Show Moreفي الدراسة الحالية، تم تصنيع جسيمات ZrO2 النانوية باستخدام مستخلص نباتي مشتق من نبات Vitex agnus castus، ووسط قلوي مثل هيدروكسيد الصوديوم. تم استخدام أسلوب التخليق الحيوي لتحضير جزيئات أوكسيد الزركونيوم النانوية لهذا المشروع البحثي. تتميز هذه الطريقة عن غيرها بسبب فعاليتها من حيث التكلفة وبساطتها وقلة المخاطر المحتملة. وتم تشخيص العينات المحضرة باستخدام المجهر الإلكتروني النافذ TEM، المجهر الإلكتروني الماسح SEM،
... Show MorePoly urea formaldehyde –Bentonite (PUF-Bentonite) composite was tested as new adsorbent
for removal of mefenamic acid (MA) from simulated wastewater in batch adsorption
procedure. Developed a method for preparing poly urea formaldehyde gel in basic media by
using condensation polymerization. Adsorption experiments were carried out as a function of
water pH, temperature, contact time, adsorbent dose and initial MA concentration .Effect of
sharing surface with other analgesic pharmaceuticals at different pH also studied. The
adsorption of MA was found to be strongly dependent to pH. The Freundlich isotherm model
showed a good fit to the equilibrium adsorption data. From Dubinin–Radushkevich model the
mean free
This study was undertaken to provide more insight on the optimum injection temperature used for the production of PE crates, thereby saving time and money, and improving part quality. The work included processing trails of HDPE crates in an injection
molding machine at five temperatures ranged from 220 to 300°C. Both Rheological and mechanical characterization was conducted in order to understand the effect of injection temperature on the properties of crates. Oven aging was also applied for (4 weeks) to evaluate the long-term thermal stability. The results revealed that producing the crates at a temperature range of (260-280 °C) gives the best rheological and mechanical result. The lowest drop in thermal stability has been observed
The plethora of the emerged radio frequency applications makes the frequency spectrum crowded by many applications and hence the ability to detect specific application’s frequency without distortion is a difficult task to achieve.
The goal is to achieve a method to mitigate the highest interferer power in the frequency spectrum in order to eliminate the distortion.
This paper presents the application of the proposed tunable 6th-order notch filter on Ultra-Wideband (UWB) Complementary Metal-Oxide-Semiconductor (CMOS) Low Noise