Colloidal dispersions of mono Au, Ag , Cu and bimetallic Ag/Au and Cu/Au
core/shell nanoparticles are synthesized by pulsed laser ablation of metals targets
immersed in 5 ml distilled water (DW). Surface Plasmon resonance (SPR) and
particle sizes are characterized by UV-VIS and HRTEM, the X-ray diffraction
shows the structure of core/shell. The Surface Plasmon resonance of the produced
nanoparticles solutions for silver nanoparticles about 402 nm and copper
nanoparticles about 636 nm. While for the core-shell observed two peaks of SPR,
Ag/Au core/shell at (406-516) nm, and Cu/Au core/shell observed one peak at
565nm, because the region of gold and copper close together. The shape and
particle size have been con
Formation of Au–Ag–Cu ternary alloy nanoparticles (NPs) is of particular interest because this trimetallic system have miscible (Au–Ag and Au–Cu) and immiscible (Ag– Cu) system. So there is a possibility of phase segregation in this ternary system. At this challenge it was present attempts synthetic technique to generate such trimetallic alloy nanoparticles by exploding wire technique. The importance of preparing nanoparticles alloys in distilled water and in this technique makes the possibility of obtaining nanoparticles free of any additional chemical substance and makes it possible to be used in the treatment of cancer or diseases resulting from bacterial or virus with least toxic. In this work, three metals alloys Au-Ag-Cu
... Show MoreMetal nanoparticles can serve as an efficient nano-heat source with confinement photothermal effects. Thermo-plasmonic technology allows researchers to control the temperature at a nanoscale due to the possibility of precise light propagation. The response of opto-thermal generation of single gold-silica core-shell nanoparticle immersed in water and Poly-vinylpyrrolidone surrounding media is theoretically investigated. Two lasers (CW and fs pulses) at the plasmonic resonance (532 nm) are utilized. For this purpose, finite element method is used via COMSOL multiphysics to find a numerical computation of absorption cross section for the proposed core –shell NP in different media. Thermo-plasmonic response for both lasers is studied. The
... Show MoreQ-switch Nd: YAG laser of wavelengths 235nm and 1,460nm with energy in the range 0.2 J to 1J and 1Hz repetition rate was employed to synthesis Ag/Au (core/shell) nanoparticles (NPs) using pulse laser ablation in water. In this synthesis, initially the silver nano-colloid prepared via ablation target, this ablation related to Au target at various energies to creat Ag/Au NPs. Surface Plasmon Resonance (SPR), surface morphology and average particle size identified employing: UV-visible spectrophotometer, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The absorbance spectra of Ag NPs and Ag/Au NPs showed sharp and single peaks around 400nm and 410nm, respec
In this work copper nanopowder was created at different liquid
medias like DDDW, ethylene glycol and Polyvinylpyrrolidone
(PVP). Copper nanopowder prepared using explosion wire process
and investigated the effects of the exploding energy, wire diameter,
the type of liquid on the particle size, and the particles size
distribution. The nanoparticles are characterized by x-ray diffraction,
UV-visible absorption spectroscopy and transmission electron
microscopy (TEM). The x-ray diffraction results reveal that the
nanoparticles continue to routine lattice periodicity at reduced
particle size. The UV-Visible absorption spectrum of liquid solution
for copper nanoparticles shows sharp and single surface Plasmon
r
This research aims to find a method to synthesize nanoparticles of important metals in the fields of medicine and electronics, with high purity small in size and narrow size distribution. And it characterized by simplicity, efficiency and high productivity. To achieve this aim the effects of laser irradiation on silver and copper colloids prepared by exploding wire technique in double distilled and deionized water (DDDW) have been studied. The laser irradiation was performed using laser radiation fluence about 4 J/cm2 at 532 nm wavelength. Additional irradiation of colloids resulted in the changes of particles morphology, which were monitored by absorption spectroscopy and transmission electron microscopy methods. It was found that both
... Show MoreIn this study, the plasma formed by the preparation of Se and Tin (Sn) using a Nd: YAG laser with a wavelength of 1064 nm in air, which was then studied using the technique of optical emission spectrum, was presented (OES).The laser-induced plasma parameters such an electron temperature (Te) were identified using two-ratio methods, using Stark broadening methods to determine the density of electrons (ne). According to the findings, there is a correlation between the amount of laser energy that is applied and the increase in the emission intensity of the spectral lines. In the case of Se plasma, an increase in laser energy causes a rise in the temperature of the electrons. While increasing the temperature of the elec
... Show MoreBeryllium Zinc Oxide (BexZn1-xO) ternary nano thin films were deposited using the pulsed laser deposition (PLD) technique under a vacuum condition of 10-3 torr at room temperature on glass substrates with different films thicknesses, (300, 600 and 900 nm). UV-Vis spectra study found the optical band gap for Be0.2Zn0.8O to be (3.42, 3.51 and 3.65 eV) for the (300, 600 and 900nm) film thicknesses, respectively which is larger than the value of zinc oxide ZnO (3.36eV) and smaller than that of beryllium oxide BeO (10.6eV). While the X-ray diffraction (XRD) pattern analysis of ZnO, BeO and Be 0.2 Zn 0.8 O powder and nano-thin films indicated a hexa
... Show MoreIn this study, silver-tungsten oxide core–shell nanoparticles (Ag–WO3 NPs) were synthesized by pulsed laser ablation in liquid employing a (1.06 µm) Q-switched Nd:YAG laser, at different Ag colloidal concentration environment (different core concentration). The produced Ag–WO3 core–shell NPs were subjected to characterization using UV–visible spectrophotometry, X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive spectroscopy, electrical analysis, and photoluminescence PL. The UV–visible spectra exhibited distinct absorption peaks at around 200 and 405 nm, which attributed to the occurrence of surface Plasmon reson