Preferred Language
Articles
/
alkej-636
Study of Mechanical Characteristics for Polymer Composite Reinforced by Particles of (Al2O3) or (Al)
...Show More Authors

A particulate polymer composite material was prepared by reinforcing with the Aluminum Oxide (Al2O3) or Aluminum (Al) metallic particles with a particle size of (30) µm to an unsaturated Polyester Resin with a weight fraction of (5%, 10%, 15%, 20%).

Tensile test results showed the maximum value of elastic modulus reached (2400MPa.)  in the case of reinforcing with (Al) particles with weight fraction (20%) and (1500 MPa.)  in the case of reinforcing with (Al2O3) particles of the same weight fraction.

  When the impact and the flexural strength tests were done, the results showed that flexural strength (F.S), maximum shear stress (τmax), impact strength (Gc) and fracture toughness (Kc) were increased with the increase of weight fraction, where the results of the samples of (Al) particles were higher than that of (Al2O3) particles reinforced at a weight fraction of (20%) at ratios of (45.43%, 45.45%, 25%, 41%) respectively. While the hardness of the samples reinforced with (Al2O3) particles was higher than that reinforced with (Al) particles with a ratio of (2.82%) at a weight fraction of (20%).

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Jun 30 2013
Journal Name
Al-khwarizmi Engineering Journal
Effect the Grain Size on the Polymer Matrix Composites Reinforced by Reenia Particles
...Show More Authors

 Synthetic polymers such as polyurethane are used widely in the field of biomedical applications such as implants or part of implant systems.

This paper focuses on the preparation of base polymer matrix composite materials by (Hand Lay-Up) method, and studying the effect of selected grain size (32, 53, 63, 75, and 90) µm of (Reenia) particles on some properties of the prepared composite.

Mechanical tests were used to evaluate the prepared system (Tensile, Compression, Impact, and Hardness) tests, and a physical test of (Water absorption %), and all tests were accomplished at room temperature.

Where results showed tensile test (maximum tensile strength and modulus of elasticity) high at small grain size while

... Show More
View Publication Preview PDF
Publication Date
Fri Sep 30 2011
Journal Name
Al-khwarizmi Engineering Journal
Studying the Effect of Addition Particles of Alumina (Al2O3) and Zirconia (ZrO2), on Some Mechanical Properties for Matrix Composites (Al-Si-Mg) Alloy
...Show More Authors

This study is concerned with the effect of adding two kinds of ceramic materials on the mechanical properties of (Al-7%Si- 0.3%Mg) alloy, which are zirconia with particle size (20μm > P.S ≥ 0.1μm) and alumina with particle size (20μm > P.S ≥ 0.1μm) and adding them to the alloy with weight ratios (0.2, 0.4, 0.6, 0.8 and 1%). Stirring casting method has been used to make composite material by using vortex technique which is used to pull the particles to inside the melted metals and distributed them homogenously.

After that solution treatment was done to the samples at (520ºC) and artificial ageing at (170ºC) in different times, it has been noticed that the values of hardness is increased with the aging time of the o

... Show More
View Publication Preview PDF
Publication Date
Fri Aug 31 2012
Journal Name
Al-khwarizmi Engineering Journal
Study of Mechanical Properties of (Al-Cu-Mg) Alloy Matrix Composite
...Show More Authors

The present research had dealt with preparing  bars  with the length of about  (13 cm) and  adiametar  of  (1.5 cm) of composite materials with metal  matrix  represented by (Al-Cu-Mg) alloy cast enforced by (ZrO2) particles with chosen weight  percentages (1.5, 2.5 ,3.5, 5.5 %). The base  cast and the composite  materials were prepared by casting method by uses vortex  Technique inorder to  fix up (ZrO2) particles in homogeneous way on  the  base cast. In addition to  that, two main groups of composite materials were prepared depending on the particles size of (ZrO2) , respectively.       &n

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 19 2017
Journal Name
Al-khwarizmi Engineering Journal
Improve Wear Resistance on Al 332 Alloy Matrix- Micro -Nano Al2O3 Particles Reinforced Composite
...Show More Authors

The wear behavior of alumina particulate reinforced A332 aluminium alloy composites produced by a stir casting process technique were investigated. A pin-on-disc type apparatus was employed for determining the sliding wear rate in composite samples at different grain size (1 µm, 12µm, 50 nm) and different weight percentage (0.05-0.1-0.5-1) wt% of alumina respectively. Mechanical properties characterization which strongly depends on microstructure properties of reinforcement revealed that the presence of ( nano , micro) alumina particulates lead to simultaneous increase in hardness, ultimate tensile stress (UTS), wear resistances. The results revealed that UTS, Hardness, Wear resistances increases with the increase in the percentage of

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 17 2017
Journal Name
Al-khwarizmi Engineering Journal
Study the Effect of Different Reinforcements on the Damping Properties of the Polymer Matrix Composite
...Show More Authors

In this research, damping properties for composite materials were evaluated using logarithmic decrement method to study the effect of reinforcements on the damping ratio of the epoxy matrix. Three stages of composites were prepared in this research. The first stage included preparing binary blends of epoxy (EP) and different weight percentages of polysulfide rubber (PSR) (0%, 2.5%, 5%, 7.5% and 10%). It was found that the weight percentage 5% of polysulfide was the best percentage, which gives the best mechanical properties for the blend matrix. The advantage of this blend matrix is that; it mediates between the brittle properties of epoxy and the flexible properties of a blend matrix with the highest percentage of PSR. The second stage

... Show More
View Publication Preview PDF
Publication Date
Thu Sep 06 2018
Journal Name
Al-khwarizmi Engineering Journal
Bone Defect Animal Model for Hybrid Polymer Matrix Nano Composite as Bone Substitute Biomaterials
...Show More Authors

Addition of bioactive materials such as Titanium oxide (TiO2), and incorporation of bio inert ceramic such as alumina (Al2O3), into polyetheretherketone (PEEK) has been adopted as an effective approach to improve bone-implant interfaces. In this paper, hot pressing technique has been adopted as a production method. This technique gave a homogenous distribution of the additive materials in the proposed composite biomaterial. Different compositions and compounding temperatures have been applied to all samples. Mechanical properties and animal model have been studied in all different production conditions. The results of these new TiO2/Al2O3/PEEK biocomposites with different

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Dec 18 2017
Journal Name
Al-khwarizmi Engineering Journal
Fabrication of Carbon Nanotube Reinforced Al2O3/Cr2O3 Nanocomposites by Coprecipitation Process
...Show More Authors

In this research, the effect of multi-walled carbon nanotubes (MWCNTs) on the alumina/chromia (Al2O3/Cr2O3) nanocomposites has been investigated. Al2O3/Cr2O3-MWCNTs nanocomposites with variable contents of Cr2O3 and MWCNTs were fabricated using coprecipitation process and followed by spark plasma sintering. XRD analysis revealed a good crystallinity of sintered nanocomposites samples and there was only one phase presence of Al2O3-Cr2O3 solid solution. Density, Vickers microhardness, fracture toughness and fracture strength have been measured in the sintered samples. The results show tha

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Jul 28 2018
Journal Name
Journal Of Engineering
Evaluation Microstructure and the Mechanical Properties of Composite Material for Al-Matrix Reinforced by Ceramic Materials (Sic And Al2O3)
...Show More Authors

In this investigation, the mechanical properties and microstructure of Metal Matrix Composites (MMCs) of Al.6061 alloy reinforced by ceramic materials SiC and Al2O3 with different additive percentages 2.5, 5, 7.5, and 10 wt.% for the particle size of 53 µm are studied. Metal matrix composites were prepared by stir casting using vortex technique and then treated thermally by solution heat treatment at 530 0C for 1 hr. and followed by aging at 175 0C with different periods. Mechanical tests were done for the samples before and after heat treatment, such as impact test, hardness test, and tensile test. Also, the microstructure of the metal matrix composites was examine

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Sep 04 2018
Journal Name
Al-khwarizmi Engineering Journal
Studying the Mechanical Properties of Denture Base Materials Fabricated from Polymer Composite Materials
...Show More Authors

In this research, the effect of adding two different types of reinforcing particles was investigated, which included: nano-zirconia (nano-ZrO2) particles and micro-lignin particles that were added with different volume fractions of 0.5%, 1%, 1.5% and 2% on the mechanical properties of polymer composite materials. They were prepared in this research, as a complete prosthesis and partial denture base materials was prepared, by using cold cure poly methyl methacrylate (PMMA) resin matrix. The composite specimens in this research consist of two groups according to the types of reinforced particles, were prepared by using casting methods, type (Hand Lay-Up) method. The first group consists of PMMA resin reinforced by (nano-ZrO

... Show More
View Publication Preview PDF
Crossref (8)
Crossref
Publication Date
Sat Sep 30 2017
Journal Name
Al-khwarizmi Engineering Journal
Influence of Nanoreinforced Particles (Al2O3) on Fatigue Life and Strength of Aluminium Based Metal Matrix Composite
...Show More Authors

Abstract

     In this investigation, Al2O3 nano material of 50nm particles size were added to the 6061 Al aluminium alloy by using the stir casting technique to fabricate the nanocomposite of 10wt% Al2O3. The experimental results observed that the addition of 10wt% Al2O3 improved the fatigue life and strength of constant and cumulative fatigue. Comparison between the S-N curves behaviour of metal matrix (AA6061) and the nanocomposite 10wt% Al2O3 has been made. The comparison revealed that 12.8% enhancement in fatigue strength at 107cycles due to 10wt% nano reinforcement. Also cumulative fatigue l

... Show More
View Publication Preview PDF
Crossref (5)
Crossref