Preferred Language
Articles
/
alkej-142
Study of Mechanical Properties of (Al-Cu-Mg) Alloy Matrix Composite

The present research had dealt with preparing  bars  with the length of about  (13 cm) and  adiametar  of  (1.5 cm) of composite materials with metal  matrix  represented by (Al-Cu-Mg) alloy cast enforced by (ZrO2) particles with chosen weight  percentages (1.5, 2.5 ,3.5, 5.5 %). The base  cast and the composite  materials were prepared by casting method by uses vortex  Technique inorder to  fix up (ZrO2) particles in homogeneous way on  the  base cast. In addition to  that, two main groups of composite materials were prepared depending on the particles size of (ZrO2) , respectively.                  

     The study also contained the effect of insolution heat treatment at (505 0C) and the following forming process in addition to aging process at (185 0C) during different periods for all the prepared models. Also we caried on the study of the effect of reinforcement the base cast process with zerconia particles (ZrO2) on some of its mechanical properties. The optical microscopy test should that the microstructures of the composite materials having fine grains as comparet with large grains more of the base cast.  As for hardness test & tensile test results showed an increase in hardness & tensile strength in addition to the increase in (ZrO2) that was added to reach the highest values when the weighted percentage of 3.5% and the amount of(140H.V),(570MPa) respectively. It was noted that the ductile values are reduced

continuously with the   increase of the added (ZrO2) .                                                                                      

     The effect of particle size of (ZrO2) particles on the mechanical properties, it was noted that there was a little reduction in the values of hardness and tensile strength with an increase of the particle size of (ZrO2) bat remains higher than in the base cast and the amount of(110H.V),(210MPa) respectively. While there was an increase in the ductilevalues with increasing the particle size but they still less than in the base cast.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Sep 30 2011
Journal Name
Al-khwarizmi Engineering Journal
Studying the Effect of Addition Particles of Alumina (Al2O3) and Zirconia (ZrO2), on Some Mechanical Properties for Matrix Composites (Al-Si-Mg) Alloy

This study is concerned with the effect of adding two kinds of ceramic materials on the mechanical properties of (Al-7%Si- 0.3%Mg) alloy, which are zirconia with particle size (20μm > P.S ≥ 0.1μm) and alumina with particle size (20μm > P.S ≥ 0.1μm) and adding them to the alloy with weight ratios (0.2, 0.4, 0.6, 0.8 and 1%). Stirring casting method has been used to make composite material by using vortex technique which is used to pull the particles to inside the melted metals and distributed them homogenously.

After that solution treatment was done to the samples at (520ºC) and artificial ageing at (170ºC) in different times, it has been noticed that the values of hardness is increased with the aging time of the o

... Show More
View Publication Preview PDF
Publication Date
Sat Sep 01 2007
Journal Name
Al-khwarizmi Engineering Journal
Study of Mechanical Characteristics for Polymer Composite Reinforced by Particles of (Al2O3) or (Al)

A particulate polymer composite material was prepared by reinforcing with the Aluminum Oxide (Al2O3) or Aluminum (Al) metallic particles with a particle size of (30) µm to an unsaturated Polyester Resin with a weight fraction of (5%, 10%, 15%, 20%).

Tensile test results showed the maximum value of elastic modulus reached (2400MPa.)  in the case of reinforcing with (Al) particles with weight fraction (20%) and (1500 MPa.)  in the case of reinforcing with (Al2O3) particles of the same weight fraction.

  When the impact and the flexural strength tests were done, the results showed that flexural strength (F.S), maximum shear stress (τmax), impact strength

... Show More
View Publication Preview PDF
Publication Date
Thu Jan 23 2020
Journal Name
Iraqi Journal Of Laser
Effect of High Energy Nd:Glass Laser on the Drilled in the 5052 AlMg Alloy

This study presents the effect of laser energy on burning loss of magnesium from the holes' drilled in aluminum alloy 5052. High energy free running pulsed Nd:Glass laser of 300 µs pulse duration has been used to perform the experiments. The laser energy was varied from 1.0 to 8.0 Joules, The drilling processes have been carried out under atmospheric pressure and vacuum inside a specially designed chamber. Microhardness of the blind drilled holes has been investigated .The results indicated that the magnesium loss could be manipulated by adjusting the focusing conditions of the laser beam. Almost, the obtained holes were free of cracks with low taper and low sputter deposition. .The holes performed under atmospheric conditions have high

... Show More
View Publication Preview PDF
Publication Date
Sun Dec 17 2017
Journal Name
Al-khwarizmi Engineering Journal
Study the Effect of Different Reinforcements on the Damping Properties of the Polymer Matrix Composite

In this research, damping properties for composite materials were evaluated using logarithmic decrement method to study the effect of reinforcements on the damping ratio of the epoxy matrix. Three stages of composites were prepared in this research. The first stage included preparing binary blends of epoxy (EP) and different weight percentages of polysulfide rubber (PSR) (0%, 2.5%, 5%, 7.5% and 10%). It was found that the weight percentage 5% of polysulfide was the best percentage, which gives the best mechanical properties for the blend matrix. The advantage of this blend matrix is that; it mediates between the brittle properties of epoxy and the flexible properties of a blend matrix with the highest percentage of PSR. The second stage

... Show More
View Publication Preview PDF
Publication Date
Fri Mar 31 2017
Journal Name
Al-khwarizmi Engineering Journal
Mechanical Properties Investigation of Composite Material Under Different Parameters Variations

         The main objective of this research is to design and select a composite plate to be used in fabricating wing skins of light unman air vehicle (UAV). The mechanical properties, weight and cost are the basis criteria of this selection. The fiber volume fraction, fillers and type of fiber with three levels for each were considered to optimize the composite plate selection. Finite element method was used to investigate the stress distribution on the wing at cruise flight condition in addition to estimate the maximum stress. An experiments plan has been designed to get the data on the basis of Taguchi technique. The most effective parameters at the process to be find out by employing L9

... Show More
Crossref
View Publication Preview PDF
Publication Date
Wed Nov 01 2017
Journal Name
Journal Of Engineering
Development the Mechanical Properties of (AL-Li-Cu) Alloy

The aim of this research is to develop mechanical properties of a new aluminium-lithium-copper alloy. This alloy prepared under control atmosphere by casting in a permanent metal mould. The microstructure was examined and mechanical properties were tested before and after heat treatment to study the influence of heat treatment on its mechanical properties including; modulus of elasticity, tensile strength, impact, and fatigue. The results showed that the modulus of elasticity of the prepared alloy is higher than standard alloy about 2%. While the alloy that heat treated for 6 h and cooled in water, then showed a higher ultimate tensile stress comparing with as-cast alloy. The homogenous heat treatment gives best fatigue

... Show More
View Publication Preview PDF
Publication Date
Wed Aug 15 2018
Journal Name
Al-khwarizmi Engineering Journal
Experimental Study the Effect of Tool Design on the Mechanical Properties of Bobbin Friction Stir Welded 6061-T6 Aluminum Alloy

Bobbin friction stir welding (BFSW) is a variant of the conventional friction stir welding (CFSW); it can weld the upper and lower surface of the work-piece in the same pass. This technique involves the bonding of materials without melting. In this work, the influence of tool design on the mechanical properties of welding joints of 6061-T6 aluminum alloy with 6.25 mm thickness produced by FSW bobbin tools was investigated and the best bobbin tool design was determined. Five different probe shapes (threaded straight cylindrical, straight cylindrical with 3 flat surfaces, straight cylindrical with 4 flat surfaces, threaded straight cylindrical with 3 flat surface and threaded straight cylindrical with 4 flat surfaces) with various dimensio

... Show More
Crossref (4)
Crossref
View Publication Preview PDF
Publication Date
Sun Dec 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Effect of Laser Shock Peening on the Fatigue Behavior and Mechanical Properties of Composite Materials

In this study, Laser Shock Peening (LSP) effect on the polymeric composite materials has been investigated experimentally. Polymeric composite materials are widely used because they are easy to fabricate and have many attractive features. Unsaturated polyester resin as a matrix was selected and Aluminum powder with micro particles as a reinforcement material was used with different volume fraction (2.5%, 5% and 7.5%). Hand lay-up process was used for preparation the composites. Fatigue test with constant amplitude with stress ratio (R =-1) was carried out before and after LSP process with two levels of energy (1Joule and 2Joule). The result showed an increase in the endurance strength of 25.448% at 7.5% volume fraction when peened is 1J

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun Dec 17 2017
Journal Name
Al-khwarizmi Engineering Journal
Effect of Nano Powder on Mechanical and Physical Properties of Glass Fiber Reinforced Epoxy Composite

Fiber reinforced polymer composite is an important material for structural application. The diversified application of FRP composite has taken center of attraction for interdisciplinary research. However, improvements on mechanical properties of this class of materials are still under research for different applications. In this paper we have modified the epoxy matrix by Al2O3, SiO2 and TiO2 nano particles in glass fiber/epoxy composite to improve the mechanical and physical properties. The composites are fabricated by hand lay-up method. It is observed that mechanical properties like flexural strength, hardness are more in case of SiO2 modified epoxy composite compare to other nano

... Show More
View Publication Preview PDF
Publication Date
Sat Dec 01 2018
Journal Name
Al-khwarizmi Engineering Journal
Mechanical Properties of Burnished Steel AISI 1008

Burnishing improves fatigue strength, surface hardness and decrease surface roughness of metal because this process transforms tensile residual stresses into compressive residual stresses. Roller burnishing tool is used in the present work on low carbon steel (AISI 1008) specimens. In this work, different experiments were used to study the influence of feed parameter and speed parameter in burnishing process on fatigue strength, surface roughness and surface hardness of low carbon steel (AISI 1008) specimens. The first parameter used is feed values which were (0.6, 0.8, and 1) mm at constant speed (370) rpm, while the second parameter used is speed at values (540, 800 and 1200) rpm and at constant feed (1) mm. The results of the fatigue

... Show More
Crossref (1)
Crossref
View Publication Preview PDF