Background: Determination of sex and estimation of stature from the skeleton is vital to medicolegal investigations. Skull is composed of hard tissue and is the best preserved part of skeleton after death, hence, in many cases it is the only available part for forensic examination. Lateral cephalogram is ideal for the skull examination as it gives details of various anatomical points in a single radiograph. This study was undertaken to evaluate the accuracy of digital cephalometric system as quick, easy and reproducible supplement tool in sex determination in Iraqi samples in different age range using certain linear and angular craniofacial measurements in predicting sex. Materials and Method The sample consisted of 113of true lateral cephalometric radiographs for adults with age range from 22-43 years old (51 males, 62 females), using certain linear and angular craniofacial measurements with the aid of computer program “AutoCAD 2007” Results: The eleven parameters measured for males and females when compared are statistically significantly different. All cranio-cephalometric measurements gave overall predictive accuracy of sex determination by discriminant analysis (86.7%). The stepwise selection method gave overall predictive accuracy of sex determination by discriminant analysis (85.8%). Age showed no statistical difference among the studied age range except for the distance from Mastoid to Frankfort plane. Conclusion: The lateral cephalometric measurements of craniofacial bones are useful to support sex determination of Iraqi population in forensic radiographic medicine.
The study aims to demonstrate the importance of instructional methods in teaching Arabic language as a second language or teaching the Arabic language to non-native speakers. The study is in line with the tremendous development in the field of knowledge, especially in the field of technology and communication, and the emergence of many electronic media in education in general and language teaching in particular. It employs an image in teaching vocabulary and presenting the experience of the Arabic Language Institute for Non-Speakers-King Abdul-Aziz University. The study follows the descriptive approach to solve the problem represented by the lack of interest in the educational methods when teaching Arabic as a second language. Accordingl
... Show MoreThe paper sheds light on the meanings of colours as a significant medium reflecting the world linguistic image which represents the culture of any country since language is closely related with culture. Language goes hand in hand with people's daily expressions, specifically those cultural ones. Language is a way to store historical and cultural information, and is a means of transferring the experience of a group to outside groups.
The world linguistic image identifies the standards of human behavior in dependence upon the human view of the surrounding world, along with the type of behavior with which the world interacts and to whose challenges and effects it responds. So, multi-cultural people perceive the sam
... Show MoreIsolation of fungi was performed from February to July, 2019. One hundred clinical specimens were collected from King Abdullah Hospital (KAH) Bisha, Saudi Arabia. Samples were collected from twenty patients of different ages (30 - 70 years old) ten males and ten females. The samples were collected from patients with the two types of diabetics. Specimens included blood, hair, nail, oral swabs and skin. Specimens were inoculated on Sabourauds Dextrose agar containing chloramphenicol. Thirteen fungal species were isolated and identified. The isolated species were: Aspergillus flavus, A. niger, A. terrus, A. nidulans, A. fumigatus, Candida albicans, C. krusei, C. parapsilosis, C. Tropicalis, Curvularia lunata, Fusarium solani, Penicill
... Show Moreسها علي حسين, هويدة إسماعيل إبراهيم, Journal of Physical Education, 2017 - Cited by 1
Many approaches of different complexity already exist to edge detection in
color images. Nevertheless, the question remains of how different are the results
when employing computational costly techniques instead of simple ones. This
paper presents a comparative study on two approaches to color edge detection to
reduce noise in image. The approaches are based on the Sobel operator and the
Laplace operator. Furthermore, an efficient algorithm for implementing the two
operators is presented. The operators have been applied to real images. The results
are presented in this paper. It is shown that the quality of the results increases by
using second derivative operator (Laplace operator). And noise reduced in a good
This work is divided into two parts first part study electronic structure and vibration properties of the Iobenguane material that is used in CT scan imaging. Iobenguane, or MIBG, is an aralkylguanidine analog of the adrenergic neurotransmitter norepinephrine and a radiopharmaceutical. It acts as a blocking agent for adrenergic neurons. When radiolabeled, it can be used in nuclear medicinal diagnostic techniques as well as in neuroendocrine antineoplastic treatments. The aim of this work is to provide general information about Iobenguane that can be used to obtain results to diagnose the diseases. The second part study image processing techniques, the CT scan image is transformed to frequency domain using the LWT. Two methods of contrast
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show More