Preferred Language
Articles
/
jbcd-228
The value of lateral cephalometric image in sex identification
...Show More Authors

Background: Determination of sex and estimation of stature from the skeleton is vital to medicolegal investigations. Skull is composed of hard tissue and is the best preserved part of skeleton after death, hence, in many cases it is the only available part for forensic examination. Lateral cephalogram is ideal for the skull examination as it gives details of various anatomical points in a single radiograph. This study was undertaken to evaluate the accuracy of digital cephalometric system as quick, easy and reproducible supplement tool in sex determination in Iraqi samples in different age range using certain linear and angular craniofacial measurements in predicting sex. Materials and Method The sample consisted of 113of true lateral cephalometric radiographs for adults with age range from 22-43 years old (51 males, 62 females), using certain linear and angular craniofacial measurements with the aid of computer program “AutoCAD 2007” Results: The eleven parameters measured for males and females when compared are statistically significantly different. All cranio-cephalometric measurements gave overall predictive accuracy of sex determination by discriminant analysis (86.7%). The stepwise selection method gave overall predictive accuracy of sex determination by discriminant analysis (85.8%). Age showed no statistical difference among the studied age range except for the distance from Mastoid to Frankfort plane. Conclusion: The lateral cephalometric measurements of craniofacial bones are useful to support sex determination of Iraqi population in forensic radiographic medicine.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Feb 08 2019
Journal Name
Journal Of The College Of Education For Women
Minimum Spanning Tree Algorithm for Skin Cancer Image Object Detection
...Show More Authors

This paper proposes a new method Object Detection in Skin Cancer Image, the minimum
spanning tree Detection descriptor (MST). This ObjectDetection descriptor builds on the
structure of the minimum spanning tree constructed on the targettraining set of Skin Cancer
Images only. The Skin Cancer Image Detection of test objects relies on their distances to the
closest edge of thattree. Our experimentsshow that the Minimum Spanning Tree (MST) performs
especially well in case of Fogginessimage problems and in highNoisespaces for Skin Cancer
Image.
The proposed method of Object Detection Skin Cancer Image wasimplemented and tested on
different Skin Cancer Images. We obtained very good results . The experiment showed that

... Show More
View Publication Preview PDF
Publication Date
Wed Dec 13 2017
Journal Name
Al-khwarizmi Engineering Journal
Digital Image Watermarking Using Arnold Scrambling and Berkeley Wavelet Transform
...Show More Authors

Embedding an identifying data into digital media such as video, audio or image is known as digital watermarking. In this paper, a non-blind watermarking algorithm based on Berkeley Wavelet Transform is proposed. Firstly, the embedded image is scrambled by using Arnold transform for higher security, and then the embedding process is applied in transform domain of the host image. The experimental results show that this algorithm is invisible and has good robustness for some common image processing operations.

View Publication Preview PDF
Publication Date
Sat May 01 2021
Journal Name
Journal Of Physics: Conference Series
Image Steganography using Dynamic Threshold based on Discrete Cosine Transform
...Show More Authors

The art of preventing the detection of hidden information messages is the way that steganography work. Several algorithms have been proposed for steganographic techniques. A major portion of these algorithms is specified for image steganography because the image has a high level of redundancy. This paper proposed an image steganography technique using a dynamic threshold produced by the discrete cosine coefficient. After dividing the green and blue channel of the cover image into 1*3-pixel blocks, check if any bits of green channel block less or equal to threshold then start to store the secret bits in blue channel block, and to increase the security not all bits in the chosen block used to store the secret bits. Firstly, store in the cente

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (6)
Scopus Crossref
Publication Date
Fri Oct 01 2021
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
Color image compression based on spatial and magnitude signal decomposition
...Show More Authors

<p>In this paper, a simple color image compression system has been proposed using image signal decomposition. Where, the RGB image color band is converted to the less correlated YUV color model and the pixel value (magnitude) in each band is decomposed into 2-values; most and least significant. According to the importance of the most significant value (MSV) that influenced by any simply modification happened, an adaptive lossless image compression system is proposed using bit plane (BP) slicing, delta pulse code modulation (Delta PCM), adaptive quadtree (QT) partitioning followed by an adaptive shift encoder. On the other hand, a lossy compression system is introduced to handle the least significant value (LSV), it is based on

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (3)
Scopus Crossref
Publication Date
Wed Dec 01 2021
Journal Name
Journal Of Physics: Conference Series
Art Image Compression Based on Lossless LZW Hashing Ciphering Algorithm
...Show More Authors
Abstract<p>Color image compression is a good way to encode digital images by decreasing the number of bits wanted to supply the image. The main objective is to reduce storage space, reduce transportation costs and maintain good quality. In current research work, a simple effective methodology is proposed for the purpose of compressing color art digital images and obtaining a low bit rate by compressing the matrix resulting from the scalar quantization process (reducing the number of bits from 24 to 8 bits) using displacement coding and then compressing the remainder using the Mabel ZF algorithm Welch LZW. The proposed methodology maintains the quality of the reconstructed image. Macroscopic and </p> ... Show More
View Publication
Scopus (9)
Crossref (4)
Scopus Crossref
Publication Date
Sun Sep 04 2011
Journal Name
Baghdad Science Journal
Combined DWT and DCT Image Compression Using Sliding RLE Technique
...Show More Authors

A number of compression schemes were put forward to achieve high compression factors with high image quality at a low computational time. In this paper, a combined transform coding scheme is proposed which is based on discrete wavelet (DWT) and discrete cosine (DCT) transforms with an added new enhancement method, which is the sliding run length encoding (SRLE) technique, to further improve compression. The advantages of the wavelet and the discrete cosine transforms were utilized to encode the image. This first step involves transforming the color components of the image from RGB to YUV planes to acquire the advantage of the existing spectral correlation and consequently gaining more compression. DWT is then applied to the Y, U and V col

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
International Journal Of Mathematics And Computer Science
Artificial Intelligence Techniques to Identify Individuals through Palm Image Recognition
...Show More Authors

Artificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le

... Show More
Scopus (7)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Fri Aug 16 2024
Journal Name
International Journal Of Mathematics And Computer Science
Artificial Intelligence Techniques to Identify Individuals through Palm Image Recognition
...Show More Authors

Artificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Tue Apr 30 2019
Journal Name
International Journal Of Environmental Research
A Comparative Study for the Identification of Superior Biomass Facilitating Biosorption of Copper and Lead Ions: A Single Alga or a Mixture of Algae
...Show More Authors

View Publication
Scopus (15)
Crossref (15)
Scopus Clarivate Crossref
Publication Date
Wed Sep 01 2021
Journal Name
Baghdad Science Journal
Isolation and Identification of Fungi from Clinical Samples of Diabetic Patients and Studying the Anti-Fungal Activity of Some Natural Oils on Isolated Fungi
...Show More Authors

Isolation of fungi was performed from February to July, 2019. One hundred clinical specimens were collected from King Abdullah Hospital (KAH) Bisha, Saudi Arabia. Samples were collected from twenty patients of different ages (30 - 70 years old) ten males and ten females. The samples were collected from patients with the two types of diabetics. Specimens included blood, hair, nail, oral swabs and skin.  Specimens were inoculated on Sabourauds Dextrose agar containing chloramphenicol. Thirteen fungal species were isolated and identified. The isolated species were: Aspergillus flavus, A. niger, A. terrus, A. nidulans, A. fumigatus, Candida albicans, C. krusei, C. parapsilosis, C. Tropicalis, Curvularia lunata, Fusarium solani, Penicill

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (2)
Scopus Clarivate Crossref