The aim of this thesis is to introduce a new concept of fibrewise topological spaces which is said to be fibrewise slightly topological spaces. We generalize some of the main results that have been reached from fibrewise topology into fibrewise slightly topological space. We introduce the concepts of fibrewise slightly closed, fibrewise slightly open, fibrewise locally sliceable, and fibrewise locally sectionable slightly topological spaces. Also, state and prove several propositions related to these concepts. On the other hand, extend separation axioms of ordinary topology into fibrewise setting. The separation axioms are said to be fibrewise slightly T_0 spaces, fibrewise slightly T_1 spaces, fibrewise slightly R_0 spaces, fibrewise slightly T_2 spaces, fibrewise slightly functionally Hausdorff spaces, fibrewise slightly regular spaces, fibrewise slightly completely regular spaces, fibrewise slightly normal spaces, and fibrewise slightly functionally normal spaces have been extend. In addition, we introduce many propositions related to these concepts. Furthermore, and show the notions of fibrewise slightly compact and connected fibrewise slightly topological spaces. Finally, the concepts are studied slightly convergent, slightly directed toward in fibrewise slightly, as well fibrewise slightly perfect topological spaces, fibrewise slightly weakly closed topological spaces, fibrewise slightly almost perfect topological spaces, and fibrewise slightly* topological spaces. Also, study several theorems and characterizations concerning these concepts.
In this research, a new application has been developed for games by using the generalization of the separation axioms in topology, in particular regular, Sg-regular and SSg- regular spaces. The games under study consist of two players and the victory of the second player depends on the strategy and choice of the first player. Many regularity, Sg, SSg regularity theorems have been proven using this type of game, and many results and illustrative examples have been presented
In this paper the research introduces a new definition of a fuzzy normed space then the related concepts such as fuzzy continuous, convergence of sequence of fuzzy points and Cauchy sequence of fuzzy points are discussed in details.
The chemical properties of chemical compounds and their molecular structures are intimately connected. Topological indices are numerical values associated with chemical molecular graphs that help in understanding the physicochemical properties, chemical reactivity and biological activity of a chemical compound. This study obtains some topological properties of second and third dominating David derived (DDD) networks and computes several K Banhatti polynomial of second and third type of DDD.
In this article, the partially ordered relation is constructed in geodesic spaces by betweeness property, A monotone sequence is generated in the domain of monotone inward mapping, a monotone inward contraction mapping is a monotone Caristi inward mapping is proved, the general fixed points for such mapping is discussed and A mutlivalued version of these results is also introduced.
In this paper, the C̆ech fuzzy soft closure spaces are defined and their basic properties are studied. Closed (respectively, open) fuzzy soft sets is defined in C̆ech fuzzy-soft closure spaces. It has been shown that for each C̆ech fuzzy soft closure space there is an associated fuzzy soft topological space. In addition, the concepts of a subspace and a sum are defined in C̆ech fuzzy soft closure space. Finally, fuzzy soft continuous (respectively, open and closed) mapping between C̆ech fuzzy soft closure spaces are introduced. Mathematics Subject Classification: 54A40, 54B05, 54C05.
Most real-life situations need some sort of approximation to fit mathematical models. The beauty of using topology in approximation is achieved via obtaining approximation for qualitative subgraphs without coding or using assumption. The aim of this paper is to apply near concepts in the -closure approximation spaces. The basic notions of near approximations are introduced and sufficiently illustrated. Near approximations are considered as mathematical tools to modify the approximations of graphs. Moreover, proved results, examples, and counterexamples are provided.
This paper is concerned with introducing and studying the M-space by using the mixed degree systems which are the core concept in this paper. The necessary and sufficient condition for the equivalence of two reflexive M-spaces is super imposed. In addition, the m-derived graphs, m-open graphs, m-closed graphs, m-interior operators, m-closure operators and M-subspace are introduced. From an M-space, a unique supratopological space is introduced. Furthermore, the m-continuous (m-open and m-closed) functions are defined and the fundamental theorem of the m-continuity is provided. Finally, the m-homeomorphism is defined and some of its properties are investigated.
The basic concepts of some near open subgraphs, near rough, near exact and near fuzzy graphs are introduced and sufficiently illustrated. The Gm-closure space induced by closure operators is used to generalize the basic rough graph concepts. We introduce the near exactness and near roughness by applying the near concepts to make more accuracy for definability of graphs. We give a new definition for a membership function to find near interior, near boundary and near exterior vertices. Moreover, proved results, examples and counter examples are provided. The Gm-closure structure which suggested in this paper opens up the way for applying rich amount of topological facts and methods in the process of granular computing.
The digital revolution had greatly affected the methods through which we communicate, starting from the basic concepts of the internet technology and the web content in addition to the important issues that concern the culture of the digital media, the internet governance and the variation in the digital age in general and the graphic and internal design in particular.
This research addresses an important topic that goes along with the scientific development in the field of the digital design, especially in the internal and graphic designs. This study consists of two sections: the first includes the problem of the study and the need for it. Starting from the problem of the research, there is no clear perception of the formal characte