The aim of this thesis is to introduce a new concept of fibrewise topological spaces which is said to be fibrewise slightly topological spaces. We generalize some of the main results that have been reached from fibrewise topology into fibrewise slightly topological space. We introduce the concepts of fibrewise slightly closed, fibrewise slightly open, fibrewise locally sliceable, and fibrewise locally sectionable slightly topological spaces. Also, state and prove several propositions related to these concepts. On the other hand, extend separation axioms of ordinary topology into fibrewise setting. The separation axioms are said to be fibrewise slightly T_0 spaces, fibrewise slightly T_1 spaces, fibrewise slightly R_0 spaces, fibrewise slightly T_2 spaces, fibrewise slightly functionally Hausdorff spaces, fibrewise slightly regular spaces, fibrewise slightly completely regular spaces, fibrewise slightly normal spaces, and fibrewise slightly functionally normal spaces have been extend. In addition, we introduce many propositions related to these concepts. Furthermore, and show the notions of fibrewise slightly compact and connected fibrewise slightly topological spaces. Finally, the concepts are studied slightly convergent, slightly directed toward in fibrewise slightly, as well fibrewise slightly perfect topological spaces, fibrewise slightly weakly closed topological spaces, fibrewise slightly almost perfect topological spaces, and fibrewise slightly* topological spaces. Also, study several theorems and characterizations concerning these concepts.
The present study concentrates on the new generalizations of the Jordan curve theorem. In order to achieve our goal, new spaces namely PC-space and strong PC-space are defined and studied their properties. One of the main concepts that use to define the related classes of spaces is paracompact space. In addition, the property of being PC-space and strong PC-space is preserved by defining a new type of function so called para-perfect function.
In the present paper, a simply* compact spaces was introduced it defined over simply*- open set previous knowledge and we study the relation between the simply* separation axioms and the compactness, in addition to introduce a new types of functions known as 𝛼𝑆 𝑀∗ _irresolte , 𝛼𝑆 𝑀∗ __𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 and 𝑅 𝑆 𝑀∗ _ continuous, which are defined between two topological spaces.
Abstract: In recent times, global attention has increasingly focused on the critical issue of environmental sustainability, owing to escalating environmental degradation exacerbated by the utilization of green spaces and technological innovation. This phenomenon necessitates thorough examination, prompting the present study to scrutinize the impact of various factors, namely green spaces, technological innovation, environmental taxes, renewable energy consumption (REC), inflation, and economic growth (EG), on environmental sustainability within the context of Iraq. Secondary data extracted from the World Development Indicators (WDI) spanning the period from 1991 to 2022 served as the foundation for this investigation. Methodologically, the
... Show MoreThe purpose of this paper is to study a new types of compactness in bitopological spaces. We shall introduce the concepts of L- compactness.
In this paper, the concept of soft closure spaces is defined and studied its basic properties. We show that the concept soft closure spaces are a generalization to the concept of
In this paper, the concept of normalized duality mapping has introduced in real convex modular spaces. Then, some of its properties have shown which allow dealing with results related to the concept of uniformly smooth convex real modular spaces. For multivalued mappings defined on these spaces, the convergence of a two-step type iterative sequence to a fixed point is proved
In the present paper, discuss the concept of fuzzy topological spectrum of a bounded commutative KU-algebra and study some of the characteristics of this topology. Also, we show that the fuzzy topological spectrum of this structure is compact and T1 -space.
Relation on a set is a simple mathematical model to which many real-life data can be connected. A binary relation on a set can always be represented by a digraph. Topology on a set can be generated by binary relations on the set . In this direction, the study will consider different classical categories of topological spaces whose topology is defined by the binary relations adjacency and reachability on the vertex set of a directed graph. This paper analyses some properties of these topologies and studies the properties of closure and interior of the vertex set of subgraphs of a digraph. Further, some applications of topology generated by digraphs in the study of biological systems are cited.
In this paper we give definitions, properties and examples of the notion of type Ntopological space. Throughout this paper N is a finite positive number, N 2. The task of this paper is to study and investigate some properties of such spaces with the existence of a relation between this space and artificial Neural Networks (ïNN'S), that is we applied the definition of this space in computer field and specially in parallel processing
In this research, a new application has been developed for games by using the generalization of the separation axioms in topology, in particular regular, Sg-regular and SSg- regular spaces. The games under study consist of two players and the victory of the second player depends on the strategy and choice of the first player. Many regularity, Sg, SSg regularity theorems have been proven using this type of game, and many results and illustrative examples have been presented