The aim of this thesis is to introduce a new concept of fibrewise topological spaces which is said to be fibrewise slightly topological spaces. We generalize some of the main results that have been reached from fibrewise topology into fibrewise slightly topological space. We introduce the concepts of fibrewise slightly closed, fibrewise slightly open, fibrewise locally sliceable, and fibrewise locally sectionable slightly topological spaces. Also, state and prove several propositions related to these concepts. On the other hand, extend separation axioms of ordinary topology into fibrewise setting. The separation axioms are said to be fibrewise slightly T_0 spaces, fibrewise slightly T_1 spaces, fibrewise slightly R_0 spaces, fibrewise slightly T_2 spaces, fibrewise slightly functionally Hausdorff spaces, fibrewise slightly regular spaces, fibrewise slightly completely regular spaces, fibrewise slightly normal spaces, and fibrewise slightly functionally normal spaces have been extend. In addition, we introduce many propositions related to these concepts. Furthermore, and show the notions of fibrewise slightly compact and connected fibrewise slightly topological spaces. Finally, the concepts are studied slightly convergent, slightly directed toward in fibrewise slightly, as well fibrewise slightly perfect topological spaces, fibrewise slightly weakly closed topological spaces, fibrewise slightly almost perfect topological spaces, and fibrewise slightly* topological spaces. Also, study several theorems and characterizations concerning these concepts.
The primary aim of this paper, is to introduce the rough probability from topological view. We used the Gm-topological spaces which result from the digraph on the stochastic approximation spaces to upper and lower distribution functions, the upper and lower mathematical expectations, the upper and lower variances, the upper and lower standard deviation and the upper and lower r th moment. Different levels for those concepts are introduced, also we introduced some results based upon those concepts.
we applied the direct product concept on the notation of intuitionistic fuzzy semi d-ideals of d-algebra with investigation some theorems, and also, we study the notation of direct product of intuitionistic fuzzy topological d-algebra.
In the present paper we introduce and study new classes of soft separation axioms in soft bitopological spaces, namely, soft (1,2)*-omega separation axioms and weak soft (1,2)*-omega separation axioms by using the concept of soft (1,2)*-omega open sets. The equivalent definitions and basic properties of these types of soft separation axioms also have been studied.
This paper focuses on developing a strategy to represent the -connected ominoes using an abacus. We use the idea of -connected ominoes with respect to a frame in modelling nested chain abacus. Then, we formulate and prove the unique connected partition for any -connected ominoes. Next, the topological structure of nested chain abacus is presented.
In this paper, we define the bg**-connected space and study the relation between this space and other kinds of connected spaces .Also we study some types of continuous functions and study the relation among (connected space, b-connected space, bg-connected space and bg**-connected space) under these types of continuous functions.
In this article, results have been shown via using a general quasi contraction multi-valued mapping in Cat(0) space. These results are used to prove the convergence of two iteration algorithms to a fixed point and the equivalence of convergence. We also demonstrate an appropriate conditions to ensure that one is faster than others.
In this work, we present new types of compact and Lindelöf spaces and some facts and results related to them. There are also types of compact and Lindelöf functions and the relationship between them has been investigated. Further, we have present some properties and results related to them.
The aim of this paper is to introduce and study the concept of SN-spaces via the notation of simply-open sets as well as to investigate their relationship to other topological spaces and give some of its properties.
The purpose of this paper is to study a new types of compactness in the dual bitopological spaces. We shall introduce the concepts of L-pre- compactness and L-semi-P- compactness .
This paper is devoted to the discussion the relationships of connectedness between some types of graphs (resp. digraph) and Gm-closure spaces by using graph closure operators.