Preferred Language
Articles
/
ijs-9588
Small Pointwise M-Projective Modules

Let R be a ring and let M be a left R-module. In this paper introduce a small pointwise M-projective module as generalization of small M- projective module, also introduce the notation of small pointwise projective cover and study their basic properties.
.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Jun 24 2022
Journal Name
Iraqi Journal Of Science
Results in Projective Geometry PG(r,23) , r 1,2

In projective plane over a finite field q F , a conic is the unique complete
(q 1) arc and any arcs on a conic are incomplete arc of degree less than q 1.
These arcs correspond to sets in the projective line over the same field. In this paper,
The number of inequivalent incomplete k  arcs; k  5,6, ,12, on the conic in
PG(2,23) and stabilizer group types are found. Also, the projective line
PG(1,23) has been splitting into two 12-sets and partitioned into six disjoint
tetrads.

View Publication Preview PDF
Publication Date
Sun Jan 30 2022
Journal Name
Iraqi Journal Of Science
Direct sum of π-projective semimodules

      Let A, and N  are a semiring ,and  a left A- semimodule, respectively. In this work we will discuss two cases: 

  1. The direct summand of π-projective semi module is π-projective, while the direct sum of two π-projective semimodules in general is not π-projective . The details of the proof will be given.
  2. We will give a condition under which the direct sum of two π-projective semi modules is π-projective, as well as we also set conditions under which π-projective semi modules are projective.

Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Apr 23 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Construction of Complete (kn,n)-Arcs in The Projective Plane PG(2,11) by Geometric Method, with the Related Blocking Sets and Projective Codes

   In this paper,we construct complete (kn,n)-arcs in the projective plane PG(2,11),  n = 2,3,…,10,11  by geometric method, with the related blocking sets and projective codes.
 

View Publication Preview PDF
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
The construction of Complete (kn,n)-arcs in The Projective Plane PG(2,5) by Geometric Method, with the Related Blocking Sets and Projective Codes

A (k,n)-arc is a set of k points of PG(2,q) for some n, but not n + 1 of them, are collinear. A (k,n)-arc is complete if it is not contained in a (k + 1,n)-arc. In this paper we construct complete (kn,n)-arcs in PG(2,5), n = 2,3,4,5, by geometric method, with the related blocking sets and projective codes.

Crossref
View Publication Preview PDF
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
Semihollow-Lifting Modules and Projectivity

Throughout this paper, T is a ring with identity and F is a unitary left module over T. This paper study the relation between semihollow-lifting modules and semiprojective covers. proposition 5 shows that If T is semihollow-lifting, then every semilocal T-module has semiprojective cover. Also, give a condition under which a quotient of a semihollow-lifting module having a semiprojective cover. proposition 2 shows that if K is a projective module. K is semihollow-lifting if and only if For every submodule A of K with K/( A) is hollow, then K/( A) has a semiprojective cover.

Scopus (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Journal Of Science
Classification of the Projective Line over Galois Field of Order 31

Our research is related to the projective line over the finite field, in this paper, the main purpose is to classify the sets of size K on the projective line PG (1,31), where K = 3,…,7 the number of inequivalent K-set with stabilizer group by using the GAP Program is computed.

Scopus Crossref
View Publication
Publication Date
Thu Dec 02 2021
Journal Name
Iraqi Journal Of Science
The group action on a projective plane over finite field of order sixteen

The goal of this paper is to construct an arcs of size five and six with stabilizer groups of type alternating group of degree five and degree six . Also construct an arc of degree five and size with its stabilizer group, and then study the effect of and on the points of projective plane. Also, find a pentastigm which has the points on a line. Partitions on projective plane of order sixteen into subplanes and arcs have been described.

View Publication Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
Italian Journal Of Pure And Applied Mathematics
A note on (m, n)-full stability Banach algebra modules relative to an ideal H of Am×n

In this paper the concept of (m, n)- fully stable Banach Algebra-module relative to ideal (F − (m, n) − S − B − A-module relative to ideal) is introducing, we study some properties of F − (m, n) − S − B − A-module relative to ideal and another characterization is given

Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
Subgroups and Orbits by Companion Matrix in Three Dimensional Projective Space

The aim of this paper is to construct cyclic subgroups of the projective general linear group over  from the companion matrix, and then form caps of various degrees in . Geometric properties of these caps as secant distributions and index distributions are given and determined if they are complete. Also, partitioned of  into disjoint lines is discussed.

Scopus (6)
Crossref (3)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Wed Nov 30 2022
Journal Name
Iraqi Journal Of Science
Pointwise Estimates for Finding the Error of Best Approximation by Spline, Positive Algebraic Polynomials and Copositive

     The first step in this research is to find some of the necessary estimations in approximation by using certain algebraic polynomials, as well as we use certain specific points in approximation. There are many estimations that help to find the best approximation using algebraic polynomials and geometric polynomials. Throughout this research, we deal with some of these estimations to estimate the best approximation error using algebraic polynomials where the basic estimations in approximation are discussed and proven using algebraic polynomials that are discussed and proven using algebraic polynomials that are specified by the following points and  if   as well as if   .

  For the second step of the work, the estimatio

... Show More
Scopus Crossref
View Publication Preview PDF