ArcHydro is a model developed for building hydrologic information systems to synthesize geospatial and temporal water resources data that support hydrologic modeling and analysis. Raster-based digital elevation models (DEMs) play an important role in distributed hydrologic modeling supported by geographic information systems (GIS). Digital Elevation Model (DEM) data have been used to derive hydrological features, which serve as inputs to various models. Currently, elevation data are available from several major sources and at different spatial resolutions. Detailed delineation of drainage networks is the first step for many natural resource management studies. Compared with interpretation from aerial photographs or topographic maps, automation of drainage network extraction from DEMs is an efficient way and has received considerable attention. This study aims to extract drainage networks from Digital Elevation Model (DEM) for Lesser Zab River Basin. Composition parameters of the drainage network including the numbers of streams and the stream lengths are derived from the DEM beside the delineation of catchment areas in the basin. The results from this application can be used to create input files for many hydrologic models.
Iron is one of the abundant elements on earth that is an essential element for humans and may be a troublesome element in water supplies. In this research an AAN model was developed to predict iron concentrations in the location of Al- Wahda water treatment plant in Baghdad city by water quality assessment of iron concentrations at seven WTPs up stream Tigris River. SPSS software was used to build the ANN model. The input data were iron concentrations in the raw water for the period 2004-2011. The results indicated the best model predicted Iron concentrations at Al-Wahda WTP with a coefficient of determination 0.9142. The model used one hidden layer with two nodes and the testing error was 0.834. The ANN model coul
... Show Morestudy was conducted on a stretch of Tigris river crossing Baghdad city to determine the concentration of some chlorophenols pollutants. Aqueous samples were preliminary enriched about 500 times and the chlorophenols have determined using high performance liquid chromatography HPLC. Limits of detection LOD were (0.007–0.012 mg L-1), relative standard deviations RSD% were 2.4%–5.59% and relative recoveries were 51.06%– 104.07%. The existence of chlorophenols in Tigris river was in the range 0.023–4.596 mg L-1. The developed method suggested in this study can be applied for routine analysis and monitoring of chlorinated phenols in environmental aqueous samples.
Studied Seen fungi water in nine stations or selected sites along the Tigris River began from the city of Mosul in the north to Qurna in episodes were measured some chemical agents and Alvezaúah water ranged pH values ??(11p) between 7.0 to 8.3 either temperatures ranged between 10to 28 m study showed isolated 22 species of 14 genera of fungi
The Tigris River is a major source of Iraq’s drinking and agricultural water supply. An increase in pollution by heavy metals can be a great threat to human and aquatic life. In this study, the pollution index (PI) and metal index (MI) were used to evaluate the status of the Tigris River in Baghdad City. Five stations were chosen to conduct the study. Five heavy metals were analyzed: iron (Fe), lead (Pb), nickel (Ni), zinc (Zn), and chromium (Cr). The result of PI was ranked between “No effect to moderately affected for Fe; Slightly Affected to Seriously Affected for Pb; no effect to moderately affected for Ni, and no effect to strongly affected for Cr; only Zn was in the No effec
This work is an experimental investigation for single basin-single slope solar still coupled with an evacuated tube solar collector. The work is carried out under the climatic conditions of Baghdad city (33.2456º North and East latitude, 44.3337º longitude) through certain days of the months of the year 2019 to study the impact of using evacuated tube solar collector on the daily productivity and efficiency under the outdoors climatic conditions. It was found that using the evacuated tube solar collector increase daily productivity from 2.175 kg/ to 2.95 kg/ for 9 hours (35.63 %) for clear days, also an enhancement about 10.97 % in daily efficiency.
In this research an Artificial Neural Network (ANN) technique was applied for the prediction of Ryznar Index (RI) of the flowing water from WTPs in Al-Karakh side (left side) in Baghdad city for year 2013. Three models (ANN1, ANN2 and ANN3) have been developed and tested using data from Baghdad Mayoralty (Amanat Baghdad) including drinking water quality for the period 2004 to 2013. The results indicate that it is quite possible to use an artificial neural networks in predicting the stability index (RI) with a good degree of accuracy. Where ANN 2 model could be used to predict RI for the effluents from Al-Karakh, Al-Qadisiya and Al-Karama WTPs as the highest correlation coefficient were obtained 92.4, 82.9 and 79.1% respe
... Show MoreA model using the artificial neural networks and genetic algorithm technique is developed for obtaining optimum dimensions of the foundation length and protections of small hydraulic structures. The procedure involves optimizing an objective function comprising a weighted summation of the state variables. The decision variables considered in the optimization are the upstream and downstream cutoffs lengths and their angles of inclination, the foundation length, and the length of the downstream soil protection. These were obtained for a given maximum difference in head, depth of impervious layer and degree of anisotropy. The optimization carried out is subjected to constraints that ensure a safe structure aga
... Show MoreDeep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for d
... Show More