In this paper further properties of the fuzzy complete a-fuzzy normed algebra have been introduced. Then we found the relation between the maximal ideals of fuzzy complete a-fuzzy normed algebra and the associated multiplicative linear function space. In this direction we proved that if is character on Z then ker is a maximal ideal in Z. After this we introduce the notion structure of the a-fuzzy normed algebra then we prove that the structure, st(Z) is -fuzzy closed subset of fb(Z, ) when (Z, , , ) is a commutative fuzzy complete a-fuzzy normed algebra with identity e.
In this paper, the packing problem for complete ( 4)-arcs in is partially solved. The minimum and the maximum sizes of complete ( 4)-arcs in are obtained. The idea that has been used to do this classification is based on using the algorithm introduced in Section 3 in this paper. Also, this paper establishes the connection between the projective geometry in terms of a complete ( , 4)-arc in and the algebraic characteristics of a plane quartic curve over the field represented by the number of its rational points and inflexion points. In addition, some sizes of complete ( 6)-arcs in the projective plane of order thirteen are established, namely for = 53, 54, 55, 56.
Aims: This study aims to compare patients’ complaints and problems of wearing complete dentures.
Methodology: The sample included 40 Iraqi patients who are wearing complete dentures from about five years ago. They
were selected randomly with a age range between (55–65) years. The questions asked to the patients were listed according
to the recent classification of post-insertion problems.
Result: The results showed that the percentage of patient's complaint from adaptation problems (62.1%) was higher than
looseness problems (61.3%) and discomfort problems (39.3%) as followed.
Recommendation: Dentists need thorough knowledge of anatomy, physiology, pathology and psychology. The assessing
of the psyche and emotions
This paper is concerned with the study of the T-norms and the quantum logic functions on BL-algebra, respectively, along with their association with the classical probability space. The proposed constructions depend on demonstrating each type of the T-norms with respect to the basic probability of binary operation. On the other hand, we showed each quantum logic function with respect to some binary operations in probability space, such as intersection, union, and symmetric difference. Finally, we demonstrated the main results that explain the relationships among the T-norms and quantum logic functions. In order to show those relations and their related properties, different examples were built.
The concepts of higher Bi- homomorphism and Jordan higher Bi- homomorphism have been introduced and studied the relation between Jordan and ordinary higher Bi- homomorphism also the concepts of Co- higher Bi- homomorphism and Co- Jordan higher Bi- homomorphism introduced and the relation between them in Banach algebra have also been studied.
In this paper the concept of (m, n)- fully stable Banach Algebra-module relative to ideal (F − (m, n) − S − B − A-module relative to ideal) is introducing, we study some properties of F − (m, n) − S − B − A-module relative to ideal and another characterization is given
Background: Cross contamination of dental appliances in the dental clinics and laboratories may potentially be a health hazard to the dental team and the patient. This study aimed to evaluate bacterial contamination of acrylic complete denture as received from dental laboratory before delivery to the patient, and then to evaluate the effectiveness of disinfection with 2% chlorhexidine and Kin denture cleaner tablet. Materials and methods: 45 newly made upper complete dentures undergone biaacterial examination for contamination before delivered to the patient. Samples were examined in two stages, first after finishing and polishing; when collected from the laboratory and before inserting to the patient mouth, second; after the samples were
... Show MoreThe purpose of this article is to partition PG(3,11) into orbits. These orbits are studied from the view of caps using the subgroups of PGL(4,11) which are determined by nontrivial positive divisors of the order of PG(3,11). The τ_i-distribution and c_i-distribution are also founded for each cap.
A (k,n)-arc A in a finite projective plane PG(2,q) over Galois field GF(q), q=p⿠for same prime number p and some integer n≥2, is a set of k points, no n+1 of which are collinear. A (k,n)-arc is complete if it is not contained in a(k+1,n)-arc. In this paper, the maximum complete (k,n)-arcs, n=2,3 in PG(2,4) can be constructed from the equation of the conic.