The purpose of this article is to partition PG(3,11) into orbits. These orbits are studied from the view of caps using the subgroups of PGL(4,11) which are determined by nontrivial positive divisors of the order of PG(3,11). The τ_i-distribution and c_i-distribution are also founded for each cap.
The aim of this paper is to construct the (k,r)-caps in the projective 3-space PG(3,p) over Galois field GF(4). We found that the maximum complete (k,2)-cap which is called an ovaloid , exists in PG(3,4) when k = 13. Moreover the maximum (k,3)-caps, (k,4)-caps and (k,5)-caps.
In this paper, the packing problem for complete ( 4)-arcs in is partially solved. The minimum and the maximum sizes of complete ( 4)-arcs in are obtained. The idea that has been used to do this classification is based on using the algorithm introduced in Section 3 in this paper. Also, this paper establishes the connection between the projective geometry in terms of a complete ( , 4)-arc in and the algebraic characteristics of a plane quartic curve over the field represented by the number of its rational points and inflexion points. In addition, some sizes of complete ( 6)-arcs in the projective plane of order thirteen are established, namely for = 53, 54, 55, 56.
In this paper, the -caps are created by action of groups on the three-dimensional projective space over the Galois field of order eight. The types of -caps are also studied and determined either they form complete caps or not.
A cap of size and degree in a projective space, (briefly; (k,r)-cap) is a set of points with the property that each line in the space meet it in at most points. The aim of this research is to extend the size and degree of complete caps and incomplete caps, (k, r)-caps of degree r<12 in the finite projective space of dimension three over the finite field of order eleven, which already exist and founded by the action of subgroups of the general linear group over the finite field of order eleven and degree four, to (k+i,r+1) -complete caps. These caps have been classified by giving the t_i-distribution and -distribution. The Gap programming has been used to execute the designed algorit
... Show MoreIn projective plane over a finite field q F , a conic is the unique complete
(q 1) arc and any arcs on a conic are incomplete arc of degree less than q 1.
These arcs correspond to sets in the projective line over the same field. In this paper,
The number of inequivalent incomplete k arcs; k 5,6, ,12, on the conic in
PG(2,23) and stabilizer group types are found. Also, the projective line
PG(1,23) has been splitting into two 12-sets and partitioned into six disjoint
tetrads.
Group action on the projective space PG(3,q) is a method which can be used to construct some geometric objects for example cap. We constructed new caps in PG(3,13) of degrees 2, 3, 4, 7,14 and sizes 2, 4, 5, 7, 10, 14, 17, 20, 28, 34, 35, 68, 70, 85, 119, 140, 170, 238, 340, 476, 595, 1190. Then the incomplete caps are extended to complete caps.
A (k,n)-arc A in a finite projective plane PG(2,q) over Galois field GF(q), q=p⿠for same prime number p and some integer n≥2, is a set of k points, no n+1 of which are collinear. A (k,n)-arc is complete if it is not contained in a(k+1,n)-arc. In this paper, the maximum complete (k,n)-arcs, n=2,3 in PG(2,4) can be constructed from the equation of the conic.
A -set in the projective line is a set of projectively distinct points. From the fundamental theorem over the projective line, all -sets are projectively equivalent. In this research, the inequivalent -sets in have been computed and each -set classified to its -sets where Also, the has been splitting into two distinct -sets, equivalent and inequivalent.
This research aims to give a splitting structure of the projective line over the finite field of order twenty-seven that can be found depending on the factors of the line order. Also, the line was partitioned by orbits using the companion matrix. Finally, we showed the number of projectively inequivalent -arcs on the conic through the standard frame of the plane PG(1,27)
In this work, we construct complete (K, n)-arcs in the projective plane over Galois field GF (11), where 12 2 ≤ ≤ n ,by using geometrical method (using the union of some maximum(k,2)- Arcs , we found (12,2)-arc, (19,3)-arc , (29,4)-arc, (38,5)-arc , (47,6)-arc, (58,7)-arc, (68,6)-arc, (81,9)-arc, (96,10)-arc, (109,11)-arc, (133,12)-arc, all of them are complete arc in PG(2, 11) over GF(11).