The relationship between prey and predator populations is hypothesized and examined using a mathematical model. Predation fear, cannibalism among the prey population, and a refuge reliant on predators are predicted to occur. This study set out to look at the long-term behavior of the proposed model and the effects of its key elements. The solution properties of the model were investigated. All potential equilibrium points' existence and stability were looked at. The system's persistence requirements were established. What circumstances could lead to local bifurcation near equilibrium points was uncovered. Suitable Lyapunov functions are used to study the system's overall dynamics. Numerical simulations were conducted to verify the model's derived long-term behavior and understand the implications of the model's primary parameters in order to support the analytical conclusions. It is observed that the system undergoes different types of local bifurcation including Hopf bifurcation.
In this paper, the effects of prey’s fear on the dynamics of the prey, predator, and scavenger system incorporating a prey refuge with the linear type of functional response were studied theoretically as well as numerically approach. The local and global stabilities of all possible equilibrium points are investigated. The persistence conditions of the model are established. the local bifurcation analysis around the equilibrium points, as well as the Hopf bifurcation near the positive equilibrium point, are discussed and analyzed. Finally, numerical simulations are carried out, and the obtained trajectories are drowned using the application of Matlab version (6) to explain our found analytical
... Show MoreThe dynamical behavior of a two-dimensional continuous time dynamical system describing by a prey predator model is investigated. By means of constructing suitable Lyapunov functional, sufficient condition is derived for the global asymptotic stability of the positive equilibrium of the system. The Hopf bifurcation analysis is carried out. The numerical simulations are used to study the effect of periodic forcing in two different parameters. The results of simulations show that the model under the effects of periodic forcing in two different parameters, with or without phase difference, could exhibit chaotic dynamics for realistic and biologically feasible parametric values.
An eco-epidemic model is proposed in this paper. It is assumed that there is a stage structure in prey and disease in predator. Existence, uniqueness and bounded-ness of the solution for the system are studied. The existence of each possible steady state points is discussed. The local condition for stability near each steady state point is investigated. Finally, global dynamics of the proposed model is studied numerically.
This paper aims to study the role of a prey refuge that depends on both prey and predator species on the dynamics of a food web model. It is assumed that the food transfer among the web levels occurs according to Lotka-Volterra functional response. The solution properties, such as existence, uniqueness, and uniform boundedness, are discussed. The local, as well as the global, stabilities of the solution of the system are investigated. The persistence of the system is studied with the assistance of average Lyapunov function. The local bifurcation conditions that may occur near the equilibrium points are established. Finally, numerical simulation is used to confirm our obtained results. It is observed that the system has only one type of a
... Show MoreIn this paper a prey-predator-scavenger food web model is proposed and studied. It is assumed that the model considered the effect of harvesting and all the species are infected by some toxicants released by some other species. The stability analysis of all possible equilibrium points is discussed. The persistence conditions of the system are established. The occurrence of local bifurcation around the equilibrium points is investigated. Numerical simulation is used and the obtained solution curves are drawn to illustrate the results of the model. Finally, the nonexistence of periodic dynamics is discussed analytically as well as numerically.
In the present article, we implement the new iterative method proposed by Daftardar-Gejji and Jafari (NIM) [V. Daftardar-Gejji, H. Jafari, An iterative method for solving nonlinear functional equations, J. Math. Anal. Appl. 316 (2006) 753-763] to solve two problems; the first one is the problem of spread of a non-fatal disease in a population which is assumed to have constant size over the period of the epidemic, and the other one is the problem of the prey and predator. The results demonstrate that the method has many merits such as being derivative-free, overcome the difficulty arising in calculating Adomian polynomials to handle the nonlinear terms in Adomian Decomposition Method (ADM), does not require to calculate Lagrange multiplier a
... Show MoreThe dynamical behavior of an ecological system of two predators-one prey updated with incorporating prey refuge and Beddington –De Angelis functional response had been studied in this work, The essential mathematical features of the present model have been studied thoroughly. The system has local and global stability when certain conditions are met. had been proved respectively. Further, the system has no saddle node bifurcation but transcritical bifurcation and Pitchfork bifurcation are satisfied while the Hopf bifurcation does not occur. Numerical illustrations are performed to validate the model's applicability under consideration. Finally, the results are included in the form of points in agreement with the obt
... Show MoreIn this paper, a Sokol-Howell prey-predator model involving strong Allee effect is proposed and analyzed. The existence, uniqueness, and boundedness are studied. All the five possible equilibria have been are obtained and their local stability conditions are established. Using Sotomayor's theorem, the conditions of local saddle-node and transcritical and pitchfork bifurcation are derived and drawn. Numerical simulations are performed to clarify the analytical results
In this paper, the dynamic behaviour of the stage-structure prey-predator fractional-order derivative system is considered and discussed. In this model, the Crowley–Martin functional response describes the interaction between mature preys with a predator. e existence, uniqueness, non-negativity, and the boundedness of solutions are proved. All possible equilibrium points of this system are investigated. e sucient conditions of local stability of equilibrium points for the considered system are determined. Finally, numerical simulation results are carried out to conrm the theoretical results.
In this paper, a harvested prey-predator model involving infectious disease in prey is considered. The existence, uniqueness and boundedness of the solution are discussed. The stability analysis of all possible equilibrium points are carried out. The persistence conditions of the system are established. The behavior of the system is simulated and bifurcation diagrams are obtained for different parameters. The results show that the existence of disease and harvesting can give rise to multiple attractors, including chaos, with variations in critical parameters.