Preferred Language
Articles
/
ijs-8430
On the Stability of Four Dimensional Lotka-Volterra Prey-Predator System
...Show More Authors

The aim of this work is to study a modified version of the four-dimensional Lotka-Volterra model. In this model, all of the four species grow logistically. This model has at most sixteen possible equilibrium points. Five of them always exist without any restriction on the parameters of the model, while the existence of the other points is subject to the fulfillment of some necessary and sufficient conditions. Eight of the points of equilibrium are unstable and the rest are locally asymptotically stable under certain conditions, In addition, a basin of attraction found for each point that can be asymptotically locally stable. Conditions are provided to ensure that all solutions are bounded. Finally, numerical simulations are given to verify and support the obtained theoretical results.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Jan 08 2020
Journal Name
International Journal Of Advanced Science And Technology
The local stability of an eco-epidemiological model involving a harvesting on predator population
...Show More Authors

In this paper a prey - predator model with harvesting on predator species with infectious disease in prey population only has been proposed and analyzed. Further, in this model, Holling type-IV functional response for the predation of susceptible prey and Lotka-Volterra functional response for the predation of infected prey as well as linear incidence rate for describing the transition of disease are used. Our aim is to study the effect of harvesting and disease on the dynamics of this model.

View Publication
Scopus
Publication Date
Mon Aug 26 2019
Journal Name
Iraqi Journal Of Science
Dynamical Behavior of an eco-epidemiological Model involving Disease in predator and stage structure in prey
...Show More Authors

An eco-epidemic model is proposed in this paper. It is assumed that there is a stage structure in prey and disease in predator. Existence, uniqueness and bounded-ness of the solution for the system are studied. The existence of each possible steady state points is discussed. The local condition for stability near each steady state point is investigated. Finally, global dynamics of the proposed model is studied numerically.

View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Sat Nov 01 2014
Journal Name
International Journal Of Basic And Applied Sciences
A reliable iterative method for solving the epidemic model and the prey and predator problems
...Show More Authors

In the present article, we implement the new iterative method proposed by Daftardar-Gejji and Jafari (NIM) [V. Daftardar-Gejji, H. Jafari, An iterative method for solving nonlinear functional equations, J. Math. Anal. Appl. 316 (2006) 753-763] to solve two problems; the first one is the problem of spread of a non-fatal disease in a population which is assumed to have constant size over the period of the epidemic, and the other one is the problem of the prey and predator. The results demonstrate that the method has many merits such as being derivative-free, overcome the difficulty arising in calculating Adomian polynomials to handle the nonlinear terms in Adomian Decomposition Method (ADM), does not require to calculate Lagrange multiplier a

... Show More
View Publication
Crossref (4)
Crossref
Publication Date
Fri Oct 20 2023
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
An Analytical Study of the Convergence and Stability of the New Four-Step Iterative Schemes
...Show More Authors

Based on the needs of the scientific community, researchers tended to find new iterative schemes or develop previous iterative schemes that would help researchers reach the fixed point with fewer steps and with stability, will be define in this paper the multi_implicit four-step iterative (MIFSI) which is development to four-step implicit fixed point iterative, to develop the aforementioned iterative scheme, we will use a finite set of projective functions ,nonexpansive function and finite set from a new functions called generalized quasi like contractive which is an amalgamation of quasi contractive function and contractive like function , by the last function and a set of sequential organized steps, we will be able to prove the existen

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Aug 21 2023
Journal Name
Communications In Mathematical Biology And Neuroscience
Delay in eco-epidemiological prey-predator model with predation fear and hunting cooperation
...Show More Authors

It is recognized that organisms live and interact in groups, exposing them to various elements like disease, fear, hunting cooperation, and others. As a result, in this paper, we adopted the construction of a mathematical model that describes the interaction of the prey with the predator when there is an infectious disease, as well as the predator community's characteristic of cooperation in hunting, which generates great fear in the prey community. Furthermore, the presence of an incubation period for the disease provides a delay in disease transmission from diseased predators to healthy predators. This research aims to examine the proposed mathematical model's solution behavior to better understand these elements' impact on an eco-epidemi

... Show More
View Publication
Scopus (4)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Feb 27 2024
Journal Name
Mathematical Modelling Of Engineering Problems
Dynamics of a Fractional-Order Prey-Predator Model with Fear Effect and Harvesting
...Show More Authors

View Publication
Scopus Crossref
Publication Date
Sat Feb 27 2021
Journal Name
Iraqi Journal Of Science
The Dynamics of a Food Web System: Role of a Prey Refuge Depending on Both Species
...Show More Authors

This paper aims to study the role of a prey refuge that depends on both prey and predator species on the dynamics of a food web model. It is assumed that the food transfer among the web levels occurs according to Lotka-Volterra functional response. The solution properties, such as existence, uniqueness, and uniform boundedness, are discussed. The local, as well as the global, stabilities of the solution of the system are investigated. The persistence of the system is studied with the assistance of average Lyapunov function. The local bifurcation conditions that may occur near the equilibrium points are established. Finally, numerical simulation is used to confirm our obtained results. It is observed that the system has only one type of a

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (1)
Scopus Crossref
Publication Date
Fri Nov 01 2019
Journal Name
Journal Of Physics: Conference Series
The Bifurcation analysis of Prey-Predator Model in The Presence of Stage Structured with Harvesting and Toxicity
...Show More Authors
Abstract<p>For a mathematical model the local bifurcation like pitchfork, transcritical and saddle node occurrence condition is defined in this paper. With the existing of toxicity and harvesting in predator and prey it consist of stage-structured. Near the positive equilibrium point of mathematical model on the Hopf bifurcation with particular emphasis it established. Near the equilibrium point E<sub>0</sub> the transcritical bifurcation occurs it is described with analysis. And it shown that at equilibrium points E<sub>1</sub> and E<sub>2</sub> happened the occurrence of saddle-node bifurcation. At each point the pitch fork bifurcation occurrence is not happened. </p> ... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Wed Jun 03 2020
Journal Name
Journal Of Applied Mathematics
Order and Chaos in a Prey-Predator Model Incorporating Refuge, Disease, and Harvesting
...Show More Authors

In this paper, a mathematical model consisting of a prey-predator system incorporating infectious disease in the prey has been proposed and analyzed. It is assumed that the predator preys upon the nonrefugees prey only according to the modified Holling type-II functional response. There is a harvesting process from the predator. The existence and uniqueness of the solution in addition to their bounded are discussed. The stability analysis of the model around all possible equilibrium points is investigated. The persistence conditions of the system are established. Local bifurcation analysis in view of the Sotomayor theorem is carried out. Numerical simulation has been applied to investigate the global dynamics and specify the effect

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2022
Journal Name
International Journal Of Differential Equations
Dynamical Behaviours of Stage-Structured Fractional-Order Prey-Predator Model with Crowley-Martin Functional Response
...Show More Authors

In this paper, the dynamic behaviour of the stage-structure prey-predator fractional-order derivative system is considered and discussed. In this model, the Crowley–Martin functional response describes the interaction between mature preys with a predator.  e existence, uniqueness, non-negativity, and the boundedness of solutions are proved. All possible equilibrium points of this system are investigated.  e su‰cient conditions of local stability of equilibrium points for the considered system are determined. Finally, numerical simulation results are carried out to con‹rm the theoretical results.

Preview PDF
Scopus (2)
Scopus