Preferred Language
Articles
/
ijs-8373
Efficient Algorithm for Solving Fuzzy Singularly Perturbed Volterra Integro-Differential Equation

     In this paper, we design a fuzzy neural network to solve fuzzy singularly perturbed Volterra integro-differential equation by using a High Performance Training Algorithm such as the Levenberge-Marqaurdt (TrianLM) and the sigmoid function of the hidden units which is the hyperbolic tangent activation function. A fuzzy trial solution to fuzzy singularly perturbed Volterra integro-differential equation is written as a sum of two components. The first component meets the fuzzy requirements, however, it does not have any fuzzy adjustable parameters. The second component is a feed-forward fuzzy neural network with fuzzy adjustable parameters. The proposed method is compared with the analytical solutions. We find that the proposed method has excellent accuracy in findings, a lower error rate, and faster convergence than other typical methods.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Dec 06 2021
Journal Name
Iraqi Journal Of Science
Properties of Fuzzy Norm of fuzzy Bounded Operators

The principal aim of this research is to use the definition of fuzzy normed space
to define fuzzy bounded operator as an introduction to define the fuzzy norm of a
fuzzy bounded linear operator then we proved that the fuzzy normed space FB(X,Y)
consisting of all fuzzy bounded linear operators from a fuzzy norm space X into a
fuzzy norm space Y is fuzzy complete if Y is fuzzy complete. Also we introduce
different types of fuzzy convergence of operators.

View Publication Preview PDF
Publication Date
Wed Jul 17 2019
Journal Name
Iraqi Journal Of Science
An Approximation Technique for Fractional Order Delay Differential Equations

In this research article, an Iterative Decomposition Method is applied to approximate linear and non-linear fractional delay differential equation. The method was used to express the solution of a Fractional delay differential equation in the form of a convergent series of infinite terms which can be effortlessly computable.
The method requires neither discretization nor linearization. Solutions obtained for some test problems using the proposed method were compared with those obtained from some methods and the exact solutions. The outcomes showed the proposed approach is more efficient and correct.

Scopus (1)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Tue Aug 28 2018
Journal Name
Mechanical Sciences
Mechatronic design and genetic-algorithm-based MIMO fuzzy control of adjustable-stiffness tendon-driven robot finger

Abstract. This work presents a detailed design of a three-jointed tendon-driven robot finger with a cam/pulleys transmission and joint Variable Stiffness Actuator (VSA). The finger motion configuration is obtained by deriving the cam/pulleys transmission profile as a mathematical solution that is then implemented to achieve contact force isotropy on the phalanges. A VSA is proposed, in which three VSAs are designed to act as a muscle in joint space to provide firm grasping. As a mechatronic approach, a suitable type and number of force sensors and actuators are designed to sense the touch, actuate the finger, and tune the VSAs. The torque of the VSAs is controlled utilizing a designed Multi Input Multi Output (MIMO) fuzzy controll

... Show More
Scopus (7)
Crossref (7)
Scopus Clarivate Crossref
View Publication
Publication Date
Wed Jan 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Necessary Condition for Optimal Boundary Control Problems for Triple Elliptic Partial Differential Equations

       In this work, we prove that the triple linear partial differential equations (PDEs) of elliptic type (TLEPDEs) with a given classical continuous boundary control vector (CCBCVr) has a unique "state" solution vector (SSV)  by utilizing the Galerkin's method (GME). Also, we prove the existence of a classical continuous boundary optimal control vector (CCBOCVr) ruled by the TLEPDEs. We study the existence solution for the triple adjoint equations (TAJEs) related with the triple state equations (TSEs). The Fréchet derivative (FDe) for the objective function is derived. At the end we prove the necessary "conditions" theorem (NCTh) for optimality for the problem.

Crossref
View Publication Preview PDF
Publication Date
Tue Oct 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Fuzzy Semi Pre Homeomorphism in Fuzzy Topological Spaces

   The aim of this paper is to introduce and study new class of fuzzy function called fuzzy semi pre homeomorphism in a fuzzy topological space by utilizing fuzzy semi pre-open sets. Therefore, some of their characterization has been proved; In addition to that we define, study and develop corresponding to new class of fuzzy semi pre homeomorphism in fuzzy topological spaces using this new class of functions.

Crossref
View Publication Preview PDF
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
Accurate Four-Step Hybrid Block Method for Solving Higher-Order Initial Value Problems

This paper focuses on developing a self-starting numerical approach that can be used for direct integration of higher-order initial value problems of Ordinary Differential Equations. The method is derived from power series approximation with the resulting equations discretized at the selected grid and off-grid points. The method is applied in a block-by-block approach as a numerical integrator of higher-order initial value problems. The basic properties of the block method are investigated to authenticate its performance and then implemented with some tested experiments to validate the accuracy and convergence of the method.

Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Fri Jul 19 2019
Journal Name
Iraqi Journal Of Science
A Comparative Study on Meta-Heuristic Algorithms For Solving the RNP Problem

The continuous increases in the size of current telecommunication infrastructures have led to the many challenges that existing algorithms face in underlying optimization. The unrealistic assumptions and low efficiency of the traditional algorithms make them unable to solve large real-life problems at reasonable times.
The use of approximate optimization techniques, such as adaptive metaheuristic algorithms, has become more prevalent in a diverse research area. In this paper, we proposed the use of a self-adaptive differential evolution (jDE) algorithm to solve the radio network planning (RNP) problem in the context of the upcoming generation 5G. The experimental results prove the jDE with best vecto

... Show More
Scopus (2)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sun Jun 04 2017
Journal Name
Baghdad Science Journal
Studying the Electron Energy Distribution Function (EEDF) and Electron Transport Coefficients in SF6 – He Gas Mixtures by Solving the Boltzmann Equation

The Boltzmann equation has been solved using (EEDF) package for a pure sulfur hexafluoride (SF6) gas and its mixtures with buffer Helium (He) gas to study the electron energy distribution function EEDF and then the corresponding transport coefficients for various ratios of SF6 and the mixtures. The calculations are graphically represented and discussed for the sake of comparison between the various mixtures. It is found that the various SF6 – He content mixtures have a considerable effect on EEDF and the transport coefficients of the mixtures

Scopus (1)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Apr 30 2022
Journal Name
Iraqi Journal Of Science
Stability for the Systems of Ordinary Differential Equations with Caputo Fractional Order Derivatives

     Fractional calculus has paid much attention in recent years, because it plays an essential role in many fields of science and  engineering, where the study of stability theory of fractional differential equations emerges to be very important. In this paper, the stability of fractional order ordinary differential equations will be studied and introduced the backstepping method. The Lyapunov function  is easily found by this method. This method also gives a guarantee of stable solutions for the fractional order differential equations. Furthermore it gives asymptotically stable.

Scopus (2)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Apr 30 2022
Journal Name
Iraqi Journal Of Science
Social Media Application for Recruitment Using Pythagorean Fuzzy

    The growth of social media is now utilized all over the world. In the past several years social media is used to communicate between person for information sharing and entertainment but now social media is also used for the hiring. This work collects data through questionnaire and online dataset on the recruitment process for three social media i.e. Facebook, Twitter, and LinkedIn. Pythagorean Fuzzy Relation (PFR) is an expansion of both Fuzzy Relationship and Fuzzy Intuitionist Relationship. The Pythagorean fuzzy set is a modern conceptual structure with greater capacity to deal with imprecision rooted in decision making. So we used this technique to identify a social media containing more number of positive respondents in recrui

... Show More
Scopus (1)
Scopus Crossref
View Publication Preview PDF