In this paper, we design a fuzzy neural network to solve fuzzy singularly perturbed Volterra integro-differential equation by using a High Performance Training Algorithm such as the Levenberge-Marqaurdt (TrianLM) and the sigmoid function of the hidden units which is the hyperbolic tangent activation function. A fuzzy trial solution to fuzzy singularly perturbed Volterra integro-differential equation is written as a sum of two components. The first component meets the fuzzy requirements, however, it does not have any fuzzy adjustable parameters. The second component is a feed-forward fuzzy neural network with fuzzy adjustable parameters. The proposed method is compared with the analytical solutions. We find that the proposed method has excellent accuracy in findings, a lower error rate, and faster convergence than other typical methods.
Some modified techniques are used in this article in order to have approximate solutions for systems of Volterra integro-differential equations. The suggested techniques are the so called Laplace-Adomian decomposition method and Laplace iterative method. The proposed methods are robust and accurate as can be seen from the given illustrative examples and from the comparison that are made with the exact solution.
In this paper, we present an approximate method for solving integro-differential equations of multi-fractional order by using the variational iteration method.
First, we derive the variational iteration formula related to the considered problem, then prove its convergence to the exact solution. Also we give some illustrative examples of linear and nonlinear equations.
The main aim of this paper is to apply a new technique suggested by Temimi and Ansari namely (TAM) for solving higher order Integro-Differential Equations. These equations are commonly hard to handle analytically so it is request numerical methods to get an efficient approximate solution. Series solutions of the problem under consideration are presented by means of the Iterative Method (IM). The numerical results show that the method is effective, accurate and easy to implement rapidly convergent series to the exact solution with minimum amount of computation. The MATLAB is used as a software for the calculations.
This paper is dealing with non-polynomial spline functions "generalized spline" to find the approximate solution of linear Volterra integro-differential equations of the second kind and extension of this work to solve system of linear Volterra integro-differential equations. The performance of generalized spline functions are illustrated in test examples
In this work, some of numerical methods for solving first order linear Volterra IntegroDifferential Equations are presented. The numerical solution of these equations is obtained by using Open Newton Cotes formula. The Open Newton Cotes formula is applied to find the optimum solution for this equation. The computer program is written in (MATLAB) language (version 6)
In this work, we will combine the Laplace transform method with the Adomian decomposition method and modified Adomian decomposition method for semi-analytic treatments of the nonlinear integro-fractional differential equations of the Volterra-Hammerstein type with difference kernel and such a problem which the kernel has a first order simple degenerate kind which the higher-multi fractional derivative is described in the Caputo sense. In these methods, the solution of a functional equation is considered as the sum of infinite series of components after applying the inverse of Laplace transformation usually converging to the solution, where a closed form solution is not obtainable, a truncated number of terms is usually used for numerical
... Show MoreA new method based on the Touchard polynomials (TPs) was presented for the numerical solution of the linear Fredholm integro-differential equation (FIDE) of the first order and second kind with condition. The derivative and integration of the (TPs) were simply obtained. The convergence analysis of the presented method was given and the applicability was proved by some numerical examples. The results obtained in this method are compared with other known results.
In this paper,the homtopy perturbation method (HPM) was applied to obtain the approximate solutions of the fractional order integro-differential equations . The fractional order derivatives and fractional order integral are described in the Caputo and Riemann-Liouville sense respectively. We can easily obtain the solution from convergent the infinite series of HPM . A theorem for convergence and error estimates of the HPM for solving fractional order integro-differential equations was given. Moreover, numerical results show that our theoretical analysis are accurate and the HPM can be considered as a powerful method for solving fractional order integro-diffrential equations.
... Show MoreIn this paper, we focus on designing feed forward neural network (FFNN) for solving Mixed Volterra – Fredholm Integral Equations (MVFIEs) of second kind in 2–dimensions. in our method, we present a multi – layers model consisting of a hidden layer which has five hidden units (neurons) and one linear output unit. Transfer function (Log – sigmoid) and training algorithm (Levenberg – Marquardt) are used as a sigmoid activation of each unit. A comparison between the results of numerical experiment and the analytic solution of some examples has been carried out in order to justify the efficiency and the accuracy of our method.
... Show More
In this article, a new efficient approach is presented to solve a type of partial differential equations, such (2+1)-dimensional differential equations non-linear, and nonhomogeneous. The procedure of the new approach is suggested to solve important types of differential equations and get accurate analytic solutions i.e., exact solutions. The effectiveness of the suggested approach based on its properties compared with other approaches has been used to solve this type of differential equations such as the Adomain decomposition method, homotopy perturbation method, homotopy analysis method, and variation iteration method. The advantage of the present method has been illustrated by some examples.