In the complex field, special functions are closely related to geometric holomorphic functions. Koebe function is a notable contribution to the study of the geometric function theory (GFT), which is a univalent function. This sequel introduces a new class that includes a more general Koebe function which is holomorphic in a complex domain. The purpose of this work is to present a new operator correlated with GFT. A new generalized Koebe operator is proposed in terms of the convolution principle. This Koebe operator refers to the generality of a prominent differential operator, namely the Ruscheweyh operator. Theoretical investigations in this effort lead to a number of implementations in the subordination function theory. The tight upper and lower bounds are discussed in the sense of subordinate structure. Consequently, the subordinate sandwich is acquired. Moreover, certain relevant specific cases are examined.
The main idea of this paper is to define other types of a fuzzy local function and study the advantages and differences between them in addition to discussing some definitions of finding new fuzzy topologies. Also in this research, a new type of fuzzy closure has been defined, where the relation between the new type and different types of fuzzy local function has been studied
The main goal of this paper is to introduce the higher derivatives multivalent harmonic function class, which is defined by the general linear operator. As a result, geometric properties such as coefficient estimation, convex combination, extreme point, distortion theorem and convolution property are obtained. Finally, we show that this class is invariant under the Bernandi-Libera-Livingston integral for harmonic functions.
This paper interest to estimation the unknown parameters for generalized Rayleigh distribution model based on censored samples of singly type one . In this paper the probability density function for generalized Rayleigh is defined with its properties . The maximum likelihood estimator method is used to derive the point estimation for all unknown parameters based on iterative method , as Newton – Raphson method , then derive confidence interval estimation which based on Fisher information matrix . Finally , testing whether the current model ( GRD ) fits to a set of real data , then compute the survival function and hazard function for this real data.
In this article, a new class of analytic functions which is defined by terms of a quasi-subordination is introduced. The coefficient estimates, including the classical inequality of functions belonging to this class, are then derived. Also, several special improving results for the associated classes involving the subordination are presented.
The applications of Ruscheweyh derivative are studied and discussed of class of meromorphic multivalent application. We get some interesting geometric properties, such as coefficient bound, Convex linear combination, growth and distortion bounds, radii of starlikenss , convexity and neighborhood property.
In this paper, Bayes estimators for the shape and scale parameters of Weibull distribution have been obtained using the generalized weighted loss function, based on Exponential priors. Lindley’s approximation has been used effectively in Bayesian estimation. Based on theMonte Carlo simulation method, those estimators are compared depending on the mean squared errors (MSE’s).
This paper deals with, Bayesian estimation of the parameters of Gamma distribution under Generalized Weighted loss function, based on Gamma and Exponential priors for the shape and scale parameters, respectively. Moment, Maximum likelihood estimators and Lindley’s approximation have been used effectively in Bayesian estimation. Based on Monte Carlo simulation method, those estimators are compared in terms of the mean squared errors (MSE’s).
This manuscript presents a new approach to accurately calculating exponential integral function that arises in many applications such as contamination, groundwater flow, hydrological problems and mathematical physics. The calculation is obtained with easily computed components without any restrictive assumptions
A detailed comparison of the execution times is performed. The calculated results by the suggested approach are better and faster accuracy convergence than those calculated by other methods. Error analysis of the calculations is studied using the absolute error and high convergence is achieved. The suggested approach out-performs all previous methods used to calculate this function and this decision is
... Show MoreIn this paper, a differential operator is used to generate a subclass of analytic and univalent functions with positive coefficients. The studied class of the functions includes:
which is defined in the open unit disk satisfying the following condition
This leads to the study of properties such as coefficient bounds, Hadamard product, radius of close –to- convexity, inclusive properties, and (n, τ) –neighborhoods for functions belonging to our class.
In this article, performing and deriving te probability density function for Rayleigh distribution is done by using ordinary least squares estimator method and Rank set estimator method. Then creating interval for scale parameter of Rayleigh distribution. Anew method using is used for fuzzy scale parameter. After that creating the survival and hazard functions for two ranking functions are conducted to show which one is beast.