In the complex field, special functions are closely related to geometric holomorphic functions. Koebe function is a notable contribution to the study of the geometric function theory (GFT), which is a univalent function. This sequel introduces a new class that includes a more general Koebe function which is holomorphic in a complex domain. The purpose of this work is to present a new operator correlated with GFT. A new generalized Koebe operator is proposed in terms of the convolution principle. This Koebe operator refers to the generality of a prominent differential operator, namely the Ruscheweyh operator. Theoretical investigations in this effort lead to a number of implementations in the subordination function theory. The tight upper and lower bounds are discussed in the sense of subordinate structure. Consequently, the subordinate sandwich is acquired. Moreover, certain relevant specific cases are examined.
In this paper, we introduce an exponential of an operator defined on a Hilbert space H, and we study its properties and find some of properties of T inherited to exponential operator, so we study the spectrum of exponential operator e^T according to the operator T.
According to the theory of regular geometric functions, the relevance of geometry to analysis is a critical feature. One of the significant tools to study operators is to utilize the convolution product. The dynamic techniques of convolution have attracted numerous complex analyses in current research. In this effort, an attempt is made by utilizing the said techniques to study a new linear complex operator connecting an incomplete beta function and a Hurwitz–Lerch zeta function of certain meromorphic functions. Furthermore, we employ a method based on the first-order differential subordination to derive new and better differential complex inequalities, namely differential subordinations.
Todays, World is faced an energy crisis because of a continuous increasing the consumption of fuels due to intension demand for all types of vehicles. This study is one of the efforts dealing with reduce the weight of vehicles by using a new material of sandwich steel, which consists of two skin steel sheets with core of a polymer material. Resistance spot welding (RSW) can be easily implemented on metals; however a cupper shunt tool was designed to perform the resistance welding of sandwich steel with DP800 cover sheets to resolve a non-conductivity problem of a polymer core. Numerical simulations with SORPAS®3D were employed to test the weldability of this new material and supported by many practical experiments. In conclus
... Show MoreThe main goal of this paper is to study and discuss a new class of meromorphici "functions[ which are multivalent defined by [fractional calculus operators. Coefficients iestimates , radiisi of satarlikeness , convexityi and closed-to-iconvexity are studied. Also distortion iand closure theorems for the classi" , are considered.
In this paper, the process for finding an approximate solution of nonlinear three-dimensional (3D) Volterra type integral operator equation (N3D-VIOE) in R3 is introduced. The modelling of the majorant function (MF) with the modified Newton method (MNM) is employed to convert N3D-VIOE to the linear 3D Volterra type integral operator equation (L3D-VIOE). The method of trapezoidal rule (TR) and collocation points are utilized to determine the approximate solution of L3D-VIOE by dealing with the linear form of the algebraic system. The existence of the approximate solution and its uniqueness are proved, and illustrative examples are provided to show the accuracy and efficiency of the model.
Mathematical Subject Classificat
... Show MoreThe experiences in the life are considered important for many fields, such as industry, medical and others. In literature, researchers are focused on flexible lifetime distribution.
In this paper, some Bayesian estimators for the unknown scale parameter of Inverse Rayleigh Distribution have been obtained, of different two loss functions, represented by Suggested and Generalized loss function based on Non-Informative prior using Jeffery's and informative prior represented by Exponential distribution. The performance of estimators is compared empirically with Maximum Likelihood estimator, Using Monte Carlo Simulation depending on the Mean Square Error (MSE). Generally, the preference of Bayesian method of Suggeste
... Show MoreThe analysis of survival and reliability considered of topics and methods of vital statistics at the present time because of their importance in the various demographical, medical, industrial and engineering fields. This research focused generate random data for samples from the probability distribution Generalized Gamma: GG, known as: "Inverse Transformation" Method: ITM, which includes the distribution cycle integration function incomplete Gamma integration making it more difficult classical estimation so will be the need to illustration to the method of numerical approximation and then appreciation of the function of survival function. It was estimated survival function by simulation the way "Monte Carlo". The Entropy method used for the
... Show MoreIn this paper, we illustrate how to use the generalized homogeneous -shift operator in generalizing various well-known q-identities, such as Hiene's transformation, the q-Gauss sum, and Jackson's transfor- mation. For the polynomials , we provide another formula for the generating function, the Rogers formula, and the bilinear generating function of the Srivastava-Agarwal type. In addition, we also generalize the extension of both the Askey-Wilson integral and the Andrews-Askey integral.
This paper introduces a generalization sequence of positive and linear operators of integral type based on two parameters to improve the order of approximation. First, the simultaneous approximation is studied and a Voronovskaja-type asymptotic formula is introduced. Next, an error of the estimation in the simultaneous approximation is found. Finally, a numerical example to approximate a test function and its first derivative of this function is given for some values of the parameters.
The purpose of this paper is to introduce and study the concepts of fuzzy generalized open sets, fuzzy generalized closed sets, generalized continuous fuzzy proper functions and prove results about these concepts.