Preferred Language
Articles
/
alkej-297
Weldability of New Material Sandwich Steel for Automotive Applications

Todays, World is faced an energy crisis because of a continuous increasing the consumption of fuels due to intension demand for all types of vehicles. This study is one of the efforts dealing with reduce the weight of vehicles by using a new material of sandwich steel, which consists of two skin steel sheets with core of a polymer material. Resistance spot welding (RSW) can be easily implemented on metals; however a cupper shunt tool was designed to perform the resistance welding of sandwich steel with DP800 cover sheets to resolve a non-conductivity problem of a polymer core. Numerical simulations with SORPAS®3D were employed to test the weldability of this new material and supported by many practical experiments. In conclusion, it was found that the weldability could be improved with using two pulses and optimized their welding parameters. Tensile-shearing tests were carried out to evaluate the strength of welding sheets. Macro/micrograph and SEM/EDS examinations were also carried out to analyze welding area and compare the nugget of welding sheets with different welding parameters. The concluded optimum welding parameters are; 3.5 kN, (5.5 kA, 8 cycles), and (10 kA, 5 cycles) for the electrode force, welding current and time of first and second pulse respectively.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Dec 30 2017
Journal Name
Al-khwarizmi Engineering Journal
Welding of Low Alloy Steel DIN 15Mo3 by MIG/MAG Spot

This research deals with the effects of welding variables using MIG/MAG spot by using Argon (Ar) gas and CO2 to show their effect on the mechanical characteristics and microstructure of low alloy steel type DIN15Mo3 and determine the optimum condition for the process of welding ; current & time. The results show the possibility of using CO2 and also Ar in low alloy steel welding with a little decrease in the shear force of not more than 13% for 4mm thickness and time 2sec. The shear force increased when using Ar instead of CO2 to be , The shear force reach 36KN when using Ar at 2mm thickness  time of 8 sec and current of 220 Amp. , when used CO2 instead of Ar d

... Show More
View Publication Preview PDF
Publication Date
Tue Mar 19 2019
Journal Name
Al-khwarizmi Engineering Journal
Optimization of Material Removal Rate and Temperature in Magnetic Abrasive Finishing Process for Stainless Steel 304

The effect of the magnetic abrasive finishing (MAF) method on the temperature rise (TR), and material removal rate (MRR) has been investigated in this paper. Sixteen runs were to determine the optimum temperature in the contact area (between the abrasive powder and surface of workpiece) and the MRR according to Taguchi orthogonal array (OA). Four variable technological parameters (cutting speed, finishing time, working gap, and the current in the inductor) with four levels for each parameter were used, the matrix is known as a L16 (44) OA. The signal to noise ratio (S/N) ratio and analysis of the variance (ANOVA) were utilized to analyze the results using (MINITAB17) to find the optimum condition and identify the significant p

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Apr 01 2016
Journal Name
Journal Of Engineering
Experimental Behavior of Steel-Concrete-Steel Sandwich Beams with Truss Configuration of Shear Connectors

This paper presents experimentally a new configuration of shear connector for Steel-Concrete-Steel (SCS) sandwich beams that is derived from truss configuration. It consists of vertical and inclined shear connectors welded together and to cover steel plates infilled with concrete. Nine simply supported SCS beams were tested until the failure under a concentrated central load (three- point bending). The beams were similar in length (1100mm), width (100mm), and the top plate thickness (4mm). The test parameters were; beam thickness (150, 200, 250, and 300mm), the bottom plate thickness (4, and 6mm), the diameter of the shear connectors (10, 12, and 16mm), and the connector spacing (100, 200, and 250mm). The test results sh

... Show More
View Publication Preview PDF
Publication Date
Mon Dec 11 2017
Journal Name
Al-khwarizmi Engineering Journal
The Effects of Long-Term Operation and High Temperature on Material Properties of Austenitic Stainless Steel Type 321H

Changes in mechanical properties of material as a result of service in different conditions can be provided by mechanical testing to assist the estimation of current internal situation of these materials, or the degree of deterioration may exist in furnaces serviced at high temperature and exceed their design life. Because of the rarity works on austenitic stainless steel material type AISI 321H, in this work, ultimate tensile strength, yield strength, elongation, hardness, and absorbed energy by impact are evaluated based on experimental data obtained from mechanical testing. Samples of tubes are extracted from furnace belong to hydrotreaterunit, also samples from un-used tube material are used to make comparisons between these properti

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
A New Fractal Printed Dipole Antenna Based on Tent Transformations for Wireless Communication Applications

In this paper, a compact multiband printed dipole antenna is presented as a candidate for use in wireless communication applications. The proposed fractal antenna design is based on the second level tent transformation. The space-filling property of this fractal geometry permits producing longer lengths in a more compact size. Theoretical performance of this antenna has been calculated using the commercially available software IE3D from Zeland Software Inc. This electromagnetic simulator is based on the method of moments (MoM). The proposed dipole antenna has been found to possess a considerable size reduction compared with the conventional printed or wire dipole antenna designed at the same design frequency and using the same substrate

... Show More
View Publication Preview PDF
Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Design and Implementation of a Telemetry System for Environmental Applications

The Environmental Data Acquisition Telemetry System is a versatile, flexible and economical means to accumulate data from multiple sensors at remote locations over an extended period of time; the data is normally transferred to the final destination and saved for further analysis.

This paper introduces the design and implementation of a simplified, economical and practical telemetry system to collect and transfer the environmental parameters (humidity, temperature, pressure etc.) from a remote location (Rural Area) to the processing and displaying unit.

To get a flexible and practical system, three data transfer methods (three systems) were proposed (including the design and implementation) for rural area services, the fi

... Show More
View Publication Preview PDF
Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Fabrication of Advanced Cement Mortar for Building Anti-Bacterial Applications

In this research, we have added nano anatase TiO2 as a partial replacement of Portland cement by a weight percentage of (0.25 to 1%) for the development of properties for protection against bacteria. The control mix was made by using "the cement to sand" proportion about (1: 2.75) with the "water to cement" proportion of (0.5) to study the structure, porosity, water absorption, density, mechanical properties, as well as anti-bacterial behavior. Inspections have been done such as scanning electron microscopy (SEM), and atomic force microscope (AFM) for mortar. Experimental results showed that after the addition of Nano powders in cement mortar, the structural properties improved significantly with the development of hydration o

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Study of Fatigue Fractography of Mild Steel Used in Automotive Industry

Fatigue failure is almost considered as the predominant problem affecting automotive parts under dynamic loading condition. Thus, more understanding of crack behavior during fatigue can strongly help in finding the proper mechanism to avoid the final fracture and extent the service life of components. The main goal of this paper is to study the fracture behavior of low carbon steel which is used mostly in automotive industry. For this purpose, the fractography of samples subjected to high and low stress levels in fatigue test then was evaluated and analyzed. Hardness and tensile tests were carried out to determine the properties of used steel. Also, the samples were characterized by microstructure test and XRD analysis to examine the con

... Show More
Crossref (4)
Crossref
View Publication Preview PDF
Publication Date
Sat Dec 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Measuring the Critical Success Factors for Total Quality Management Applications (Compared research of many colleges)

ABSTRACT

This research aim to measure the critical success factors for total quality management applications, in order to know the key and important role played by these factors at applying the total quality management through a comparative study conducted in a number of a private colleges.

The research problem posed a set of questions, the most important ones are: Are the colleges (sample of research) aware of the critical success factors at applying the total quality management? What is the availability of the critical success factors at the work of the colleges (sample of research)? 

What are the critical success factors in the work of the researc

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Sun Jul 09 2023
Journal Name
Journal Of Engineering
Study the Effect of Face Sheets Material on Strength of Sandwich Plates with Circular Hole

This study aims to investigate the effect of changing skins material on the strength of sandwich plates with circular hole when subjected to mechanical loads. Theoretical, numerical and experimental analyses are done for sandwich plates with hole and with two face sheet materials. Theoretical analysis is performed by using sandwich plate theory which depends on the first order shear deformation theory for plates subjected to tension and bending separately. Finite element method was used to analyse numerically all cases by ANSYS program.

The sandwich plates were investigated experimentally under bending and buckling load separately. The relationship between stresses and the ratio of hole diameter to plate width (d/b) are built, by

... Show More
Crossref
View Publication Preview PDF