The applications of Ruscheweyh derivative are studied and discussed of class of meromorphic multivalent application. We get some interesting geometric properties, such as coefficient bound, Convex linear combination, growth and distortion bounds, radii of starlikenss , convexity and neighborhood property.
The major target of this paper is to study a confirmed class of meromorphic univalent functions . We procure several results, such as those related to coefficient estimates, distortion and growth theorem, radii of starlikeness, and convexity for this class, n additionto hadamard product, convex combination, closure theorem, integral operators, and neighborhoods.
According to the theory of regular geometric functions, the relevance of geometry to analysis is a critical feature. One of the significant tools to study operators is to utilize the convolution product. The dynamic techniques of convolution have attracted numerous complex analyses in current research. In this effort, an attempt is made by utilizing the said techniques to study a new linear complex operator connecting an incomplete beta function and a Hurwitz–Lerch zeta function of certain meromorphic functions. Furthermore, we employ a method based on the first-order differential subordination to derive new and better differential complex inequalities, namely differential subordinations.
The main goal of this paper is to study and discuss a new class of meromorphici "functions[ which are multivalent defined by [fractional calculus operators. Coefficients iestimates , radiisi of satarlikeness , convexityi and closed-to-iconvexity are studied. Also distortion iand closure theorems for the classi" , are considered.
The main goal of this paper is to introduce the higher derivatives multivalent harmonic function class, which is defined by the general linear operator. As a result, geometric properties such as coefficient estimation, convex combination, extreme point, distortion theorem and convolution property are obtained. Finally, we show that this class is invariant under the Bernandi-Libera-Livingston integral for harmonic functions.
In this paper, we introduce and discuss an extended subclass〖 Ą〗_p^*(λ,α,γ) of meromorphic multivalent functions involving Ruscheweyh derivative operator. Coefficients inequality, distortion theorems, closure theorem for this subclass are obtained.
The main objective of" this paper is to study a subclass of holomrphic and univalent functions with negative coefficients in the open unit disk U= defined by Hadamard Product. We obtain coefficients estimates, distortion theorem , fractional derivatives, fractional integrals, and some results.
We presented in this paper a new class containing analytic univalent functions defined on unit disk. We obtained many geometric properties , like , coefficient inequality , distortion and growth theorems, convolution property, convex set, arithmetic mean and radius of starlikness and convexity by using Gaussian hypergeometric function for the class
In this paper, we analyze several aspects of a hyperbolic univalent function related to convexity properties, by assuming to be the univalent holomorphic function maps of the unit disk onto the hyperbolic convex region ( is an open connected subset of). This assumption leads to the coverage of some of the findings that are started by seeking a convex univalent function distortion property to provide an approximation of the inequality and confirm the form of the lower bound for . A further result was reached by combining the distortion and growth properties for increasing inequality . From the last result, we wanted to demonstrate the effect of the unit disk image on the condition of convexity estimation
... Show MoreThe main goal of this paper is to study applications of the fractional calculus techniques for a certain subclass of multivalent analytic functions on Hilbert Space. Also, we obtain the coefficient estimates, extreme points, convex combination and hadamard product.
We introduce a new class of harmonici multivalent functions define by generalized Rucheweyh derivative operator. We also obtain several interesting propertiesi such as sharp coefficienit estimates, distortioni bound, extreme points, Hadamardi product and other several results. Derivative; extreme points.