The main goal of this paper is to introduce a new class in the category of modules. It is called quasi-invertibility monoform (briefly QI-monoform) modules. This class of modules is a generalization of monoform modules. Various properties and another characterization of QI-monoform modules are investigated. So, we prove that an R-module M is QI-monoform if and only if for each non-zero homomorphism f:M E(M), the kernel of this homomorphism is not quasi-invertible submodule of M. Moreover, the cases under which the QI-monoform module can be monoform are discussed. The relationships between QI-monoform and other related concepts such as semisimple, injective and multiplication modules are studied. We also show that they are proper subclasses of QI-monoform modules. Furthermore, we focus on the relationship between QI-monoform and polyform modules.
In this work, We introduce the concepts of an FP-Extending, FP-Continuous and FP-Quasi-Continuous which are stronger than P-Extending, P-Continuous and P-Quasi-Continuous. characterizations and properties of FP-Extending, FP-Continuous and FP-Quasi-Continuous are obtained . A module M is called FP-Extending ( FP-Continuous, FP-Quasi-Continuous) if every submodule is P-Extending (P-Continuous, P-Quasi-Continuous) .
In this paper we introduce the notions of bi-ideal with respect to an element r
denoted by (r-bi- ideal ) of a near ring , and the notion fuzzy bi- ideal with respect
to an element of a near ring and the relation between F-r-bi-ideal and r-bi-ideal of
the near ring, we studied the image and inverse image of r-bi- ideal under
epimomorphism ,the intersection of r-bi- ideals and the relation between this ideal
and the quasi ideal of a near ring, also we studied the notion intuitionistic fuzzy biideal
with respect to an element r of the near ring N, and give some theorem about
this ideal .
In this paper, the concepts of -sequence prime ideal and -sequence quasi prime ideal are introduced. Some properties of such ideals are investigated. The relations between -sequence prime ideal and each of primary ideal, -prime ideal, quasi prime ideal, strongly irreducible ideal, and closed ideal, are studied. Also, the ideals of a principal ideal domain are classified into quasi prime ideals and -sequence quasi prime ideals.
In this paper, some new types of regularity axioms, namely pairwise quasi-regular, pairwise semi-regular, pairwise pseudo regular and pairwise regular are defined and studied in both ech fuzzy soft bi-closure spaces ( bicsp’s) and their induced fuzzy soft bitopological spaces. We also study the relationships between them. We show that in all these types of axioms, the hereditary property is satisfied under closed fs bi-csubsp of . Furthermore, we define some normality axioms, namely pairwise semi-normal, pairwise pseudo normal, pairwise normal and pairwise completely normal in both bicsp’s and their induced fuzzy soft bitopological spaces, as well as their basic properties and the relationships between them are studied.
... Show More