In this paper we introduce the notions of bi-ideal with respect to an element r
denoted by (r-bi- ideal ) of a near ring , and the notion fuzzy bi- ideal with respect
to an element of a near ring and the relation between F-r-bi-ideal and r-bi-ideal of
the near ring, we studied the image and inverse image of r-bi- ideal under
epimomorphism ,the intersection of r-bi- ideals and the relation between this ideal
and the quasi ideal of a near ring, also we studied the notion intuitionistic fuzzy biideal
with respect to an element r of the near ring N, and give some theorem about
this ideal .
In this paper we tend to describe the notions of intuitionistic fuzzy asly ideal of ring indicated by (I. F.ASLY) ideal and, we will explore some properties and connections about this concept.
The aim of this paper is to introduce and study a new kind of graphs associated to an ideal of a commutative ring. Let ℛ be a commutative ring with identity, and I(ℛ) be the set of all non-trivial ideals of ℛ with S I(ℛ). The sum ideal graph associated to S, denoted by Ψ(ℛ, S), is the undirected graph with vertex set {A I(ℛ): S⊂A+B, for some B I(ℛ)} where two ideal vertices A and B are adjacent if and only if A B and S⊂A+B. In this paper we establish some of characterizations and results of this kind of graph with providing some examples.
In this paper we generalize some of the results due to Bell and Mason on a near-ring N admitting a derivation D , and we will show that the body of evidence on prime near-rings with derivations have the behavior of the ring. Our purpose in this work is to explore further this ring like behavior. Also, we show that under appropriate additional hypothesis a near-ring must be a commutative ring.
In thisˑ paperˑ, we apply the notion ofˑ intuitionisticˑ fuzzyˑ n-fold KU-ideal of KU-algebra. Some types of ideals such as intuitionistic fuzzy KU-ideal, intuitionisticˑ fuzzy closed idealˑ and intuitionistic fuzzy n-fold KU-ideal are studied. Also, the relations between intuitionistic fuzzy n-fold KU-ideal and intuitionistic fuzzy KU-ideal are discussed. Furthermore, aˑ fewˑ results of intuitionisticˑ fuzzyˑ n-ˑfold KU-ideals of a KU-algebra underˑ homomorphismˑ are discussed.
In this work, we introduced and studied a new kind of soft mapping on soft topological spaces with an ideal, which we called soft strongly generalized mapping with respect an ideal I, we studied the concepts like SSIg-continuous, Contra-SSIg-continuous, SSIg-open, SSIg-closed and SSIg-irresolute mapping and the relations between these kinds of mappings and the composition of two mappings of the same type of two different types, with proofs or counter examples
In this paper, we shall investigate and study some kinds of ideals in an intuitionistic fuzzy setting, they are called complete intuitionistic fuzzy subalgebra, complete intuitionistic fuzzy ideal, and complete intuitionistic fuzzy ideal. In this study, we have also proposed some hypotheses to explain some of the relationships between these kinds of intuitionistic fuzzy ideals.
In this work, we introduce an intuitionistic fuzzy ideal on a KU-semigroup as a generalization of the fuzzy ideal of a KU-semigroup. An intuitionistic fuzzy k-ideal and some related properties are studied. Also, a number of characteristics of the intuitionistic fuzzy k-ideals are discussed. Next, we introduce the concept of intuitionistic fuzzy k-ideals under homomorphism along with the Cartesian products.
we applied the direct product concept on the notation of intuitionistic fuzzy semi d-ideals of d-algebra with investigation some theorems, and also, we study the notation of direct product of intuitionistic fuzzy topological d-algebra.
Let R be a commutative ring with non-zero identity element. For two fixed positive integers m and n. A right R-module M is called fully (m,n) -stable relative to ideal A of , if for each n-generated submodule of Mm and R-homomorphism . In this paper we give some characterization theorems and properties of fully (m,n) -stable modules relative to an ideal A of . which generalize the results of fully stable modules relative to an ideal A of R.