Preferred Language
Articles
/
ijs-7886
Quasi-invertibility Monoform Modules

The main goal of this paper is to introduce a new class in the category of modules. It is called quasi-invertibility monoform (briefly QI-monoform) modules. This class of modules is a generalization of monoform modules. Various properties and another characterization of QI-monoform modules are investigated. So, we prove that an R-module M is QI-monoform if and only if for each non-zero homomorphism f:M E(M), the kernel of this homomorphism is not quasi-invertible submodule of M. Moreover, the cases under which the QI-monoform module can be monoform are discussed. The relationships between QI-monoform and other related concepts such as semisimple, injective and multiplication modules are studied. We also show that they are proper subclasses of QI-monoform modules. Furthermore, we focus on the relationship between QI-monoform and polyform modules.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Mar 03 2013
Journal Name
Baghdad Science Journal
Couniform Modules

In this paper we introduce and study a new concept named couniform modules, which is a dual notion of uniform modules, where an R-module M is said to be couniform if every proper submodule N of M is either zero or there exists a proper submodule N1 of N such that is small submodule of (denoted by ) Also many relationships are given between this class of modules and other related classes of modules. Finally, we consider the hereditary property between R-module M and R-module R in case M is couniform.

Crossref
View Publication Preview PDF
Publication Date
Sun Mar 19 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
2-Regular Modules

  In this paper we introduced the concept of 2-pure submodules as a generalization of pure submodules, we study some of its basic properties and by using this concept we define the class of 2-regular modules, where an R-module M is called 2-regular module if every submodule is 2-pure submodule. Many results about this concept are given. 

View Publication Preview PDF
Publication Date
Fri Jan 01 2010
Journal Name
Iraqi Journal Of Science
PRIME HOLLOW MODULES

A non-zero module M is called hollow, if every proper submodule of M is small. In this work we introduce a generalization of this type of modules; we call it prime hollow modules. Some main properties of this kind of modules are investigated and the relation between these modules with hollow modules and some other modules are studied, such as semihollow, amply supplemented and lifting modules.

View Publication Preview PDF
Publication Date
Wed Apr 25 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Quasi-inner product spaces of quasi-Sobolev spaces and their completeness

      Sequences spaces  , m  ,  p  have called quasi-Sobolev spaces were  introduced   by Jawad . K. Al-Delfi in 2013  [1]. In this  paper , we deal with notion of  quasi-inner product  space  by using concept of  quasi-normed  space which is generalized  to normed space and given a  relationship  between  pre-Hilbert space and a  quasi-inner product space with important  results   and   examples.  Completeness properties in quasi-inner   product space gives  us  concept of  quasi-Hilbert space .  We show  that ,  not  all  quasi-Sobolev spa

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun Sep 03 2017
Journal Name
Baghdad Science Journal
CL-duo modules

In this paper, we introduce and study a new concept (up to our knowledge) named CL-duo modules, which is bigger than that of duo modules, and smaller than weak duo module which is given by Ozcan and Harmanci. Several properties are investigated. Also we consider some characterizations of CL-duo modules. Moreover, many relationships are given for this class of modules with other related classes of modules such as weak duo modules, P-duo modules.

Scopus (3)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
ON CLS- MODULES

Let R be a commutative ring with identity and let M be a unital left R-module.
A.Tercan introduced the following concept.An R-module M is called a CLSmodule
if every y-closed submodule is a direct summand .The main purpose of this
work is to develop the properties of y-closed submodules.

View Publication Preview PDF
Publication Date
Fri Dec 30 2022
Journal Name
Iraqi Journal Of Science
F-Approximately Regular Modules

We introduce in this paper the concept of an approximately pure submodule as a     generalization of a pure submodule, that is defined by Anderson and Fuller. If every submodule of an R-module  is approximately pure, then  is called F-approximately regular. Further, many results about this concept are given.

Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Mar 30 2022
Journal Name
Iraqi Journal Of Science
On Annihilator-Extending Modules

    Throughout this work we introduce the notion of Annihilator-closed submodules, and we give some basic properties of this concept. We also introduce a generalization for the Extending modules, namely Annihilator-extending modules. Some fundamental properties are presented as well as  we discuss the relation between this concept and some other related concepts.

Scopus (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Mon May 20 2019
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Pseudo Quasi-2-Absorbing Submodules and Some Related Concepts

Let R be a ring and let A be a unitary left R-module. A proper submodule H of an R-module A is called 2-absorbing , if rsa∈H, where r,s∈R,a∈A, implies that either ra∈H or sa∈H or rs∈[H:A], and a proper submodule H of an R-module A is called quasi-prime , if rsa∈H, where r,s∈R,a∈A, implies that either ra∈H or sa∈H. This led us to introduce the concept pseudo quasi-2-absorbing submodule, as a generalization of both concepts above, where a proper submodule H of an R-module A is called a pseudo quasi-2-absorbing submodule of A, if whenever rsta∈H,where r,s,t∈R,a∈A, implies that either rsa∈H+soc(A) or sta∈H+soc(A) or rta∈H+soc(A), where soc(A) is socal of an

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Fri Apr 30 2021
Journal Name
Iraqi Journal Of Science
On Small Primary Modules

Let  be a commutative ring with an identity and be a unitary -module. We say that a non-zero submodule  of  is  primary if for each with en either or  and an -module  is a small primary if   =  for each proper submodule  small in. We provided and demonstrated some of the characterizations and features of these types of submodules (modules).  

Scopus Crossref
View Publication Preview PDF