. Suppose that is the Cayley graph whose vertices are all elements of and two vertices and are adjacent if and only if . In this paper,we introduce the generalized Cayley graph denoted by which is a graph with a vertex set consisting of all column matrices in which all components are in and two vertices and are adjacent if and only if , where is a column matrix that each entry is the inverse of the similar entry of and is matrix with all entries in , is the transpose of and and m . We aim to provide some basic properties of the new graph and determine the structure of when is a complete graph for every , and n, m .
In This paper, we have been approximated Grűnwald-Letnikov Derivative of a function having m continuous derivatives by Bernstein Chlodowsky polynomials with proving its best approximation. As well as we have been solved Bagley-Torvik equation and Fokker–Planck equation where the derivative is in Grűnwald-Letnikov sense.
In this paper we introduce a new type of functions called the generalized regular
continuous functions .These functions are weaker than regular continuous functions and
stronger than regular generalized continuous functions. Also, we study some
characterizations and basic properties of generalized regular continuous functions .Moreover
we study another types of generalized regular continuous functions and study the relation
among them
Richards in 1996 introduced the idea of leftly e ─ core transference by using many conditions, including that the difference between the colums (k) is greater than of weight. In this paper, we generalized this idea without the condition of Richards depending on the mathematical and computational solution.
A space X is named a πp – normal if for each closed set F and each π – closed set F’ in X with F ∩ F’ = ∅, there are p – open sets U and V of X with U ∩ V = ∅ whereas F ⊆ U and F’ ⊆ V. Our work studies and discusses a new kind of normality in generalized topological spaces. We define ϑπp – normal, ϑ–mildly normal, & ϑ–almost normal, ϑp– normal, & ϑ–mildly p–normal, & ϑ–almost p-normal and ϑπ-normal space, and we discuss some of their properties.
The aim of this paper is to translate the basic properties of the classical complete normed algebra to the complete fuzzy normed algebra at this end a proof of multiplication fuzzy continuous is given. Also a proof of every fuzzy normed algebra without identity can be embedded into fuzzy normed algebra with identity and is an ideal in is given. Moreover the proof of the resolvent set of a non zero element in complete fuzzy normed space is equal to the set of complex numbers is given. Finally basic properties of the resolvent space of a complete fuzzy normed algebra is given.
Assume that G is a finite group and X = tG where t is non-identity element with t3 = 1. The simple graph with node set being X such that a, b ∈ X, are adjacent if ab-1 is an involution element, is called the A4-graph, and designated by A4(G, X). In this article, the construction of A4(G, X) is analyzed for G is the twisted group of Lie type 3D4(3).
Assume that G is a finite group and X is a subset of G. The commuting graph is denoted by С(G,X) and has a set of vertices X with two distinct vertices x, y Î X, being connected together on the condition of xy = yx. In this paper, we investigate the structure of Ϲ(G,X) when G is a particular type of Leech lattice groups, namely Higman–Sims group HS and Janko group J2, along with X as a G-conjugacy class of elements of order 3. We will pay particular attention to analyze the discs’ structure and determinate the diameters, girths, and clique number for these graphs.
In the current paper, we study the structure of Jordan ideals of a 3-prime near-ring which satisfies some algebraic identities involving left generalized derivations and right centralizers. The limitations imposed in the hypothesis were justified by examples.
Let G be a finite group and X be a conjugacy class of order 3 in G. In this paper, we introduce a new type of graphs, namely A4-graph of G, as a simple graph denoted by A4(G,X) which has X as a vertex set. Two vertices, x and y, are adjacent if and only if x≠y and x y-1=y x-1. General properties of the A4-graph as well as the structure of A4(G,X) when G@ 3D4(2) will be studied.
The purpose of this resesrh know (the effectiveness of cooperative lerarning implementation of floral material for calligraphy and ornamentation) To achieve the aim of the research scholar put the two zeros hypotheses: in light of the findings of the present research the researcher concluded a number of conclusions, including: -
1 - Sum strategy helps the learner to be positive in all the information and regulations, monitoring and evaluation during the learning process.
2 - This strategy helps the learner to use information and knowledge and their use in various educational positions, and to achieve better education to increase its ability to develop thinking skills and positive trends towards the article.
In light of this, the